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Abstract

Structural health monitoring (SHM) is a competitive approach for damage detection in aircraft
structures, wherein online information is collected and compared with an existing database for
the undamaged structure, to obtain real-time information about the presence of damage. The goal
of this research is to develop numerical models of inverse problems for damage detection in
aircraft structures, which could later be part of an on-board system for SHM. In this work, the
numerical modeling has two main branches: I. The direct problem: a model is required to obtain
information on the distribution of the quantity of interest throughout a given damaged structure.
The model of the direct problem, using the boundary element method (BEM), is expected to
reproduce the reality of an aircraft structure. 1l. The inverse problem: a model is required to
locate the structural damage given the information on the quantity of interest at particular
locations (sensor locations). To increase the reliability of the detection approach, a combination
of independent optimization and identification procedures can be used. Some treatment of the
model uncertainties is required, due to the stochasticity in the problem variables and parameters.

1. Introduction / research outline

1.1 Background

Aircraft structures are subject to damage during their useful life. The timely detection of
damages in aircraft structures is an important feature for flight safety. The usual inspection
procedures during regular maintenance intervals may lead to problems such as:

e Inspection intervals might be too large, thus allowing damage to propagate unnoticed for an
unacceptable time interval or through an unacceptable extension;

e Critical structural components might be difficult to access, thus imposing disassembly /
assembly procedures which are time-consuming and expensive, sometimes requiring jigs and
other special tools for proper assembly of the structure;

e Some non-destructive techniques (such as eddy current, for example) may be portable, not
requiring full disassembly of the structure, but might be inaccurate or might depend strongly
on the technician’s experience for a damage to be detected properly;

e Other non-destructive technigques (such as X-Ray, or magnetic particles, for example) might
require full component disassembly and removal to an industrial facility to perform the
structural inspection.

e Some structural components, for example those made of composite materials, may present
internal damage which is difficult to detect using standard inspection techniques, as
ultrasonic tests.

1.2 Scientific Challenge

Structural health monitoring (SHM) is a competitive approach for damage detection, wherein
online information is collected, compared with an existing database for the undamaged structure,
and from this comparison, real-time information about the presence of damage is obtained, its
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location, length, speed of propagation, and, ultimately, the remaining operational life of the

structural component.

Some challenges related to an efficient on-board structural health monitoring system include:

e The system must be small in size and weight, must consume a small amount of power, and
must not interfere with the aircraft electrical system;

e The system must be reliable, and the information on the located damage must also be
reliable: thus, the system must have redundancies in the built-in numerical codes, which must
be based on separate independent numerical models.

1.3 Objective

To study and develop numerical models of inverse problems for damage detection in aircraft
structures, which could later be part of an on-board system for structural health monitoring.

1.4 Approach

The approach in this research work is to investigate the feasibility of numerical procedures for
damage detection in aircraft structures. The numerical modeling consists in two main parts:

I. The direct problem: a model for the structure is required to obtain information on the
distribution of the quantity of interest (for example, the acoustic pressure or the stress field)
throughout the structure, given the boundary conditions and the presence of the damage.
The modeling of the structures is carried out using the boundary element method (BEM).
The advantages of the Boundary Element Method over other numerical methods (such as
finite elements) are well known from the literature, especially for the treatment of high
gradient problems, such as the stress gradient due to cracks. Numerical models for
potential, acoustics, or elasticity can be used in combination or independently, to simulate
the multiple physics present in lamb waves, stress waves, acoustic emission, etc, involved
in the usual structural monitoring techniques ([1] - [3]).

Il. The inverse problem: a model is required for the procedure of locating the damage in the
structure given some (partial) information on the quantity of interest (for example, the
stress field) at some particular locations (for example, where some sensors are placed). For
this inverse problem, both optimization procedures (local and global optimization) and
identification techniques can be used.

Also, both the direct and the inverse problems are in fact stochastic, and involve some level of
treatment of the randomness of the parameters and variables of the models.

The research project concentrates on three main problems:

1. The direct problem: the model of a structure with a known, assumed damage. For this
problem, the numerical codes to investigate must include the model of reinforced panel
structures, both metallic and composite. Some possibilities for these models are:

e The elastic modeling of cracked anisotropic plates using boundary element methods.
Further study might include elastoplastic and elastodynamic behaviors;

e The acoustic modeling of damaged anisotropic plates using boundary element
methods. The study might include acoustic propagation from a generated signal or
from existing aerodynamic noise.
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e The dynamic modeling of the vibration signature of the damaged structure, including
natural frequencies and modes of vibration.

2. The inverse problem: a global optimization procedure to minimize a functional, obtained
from differences between measured values and values generated by the numerical code at
different assumed damage locations. The minimum value of the functional will occur when
the distance between the real damage and the assumed damage location in the numerical code
is also a minimum, thus giving an indication of the damage location and size. Some
possibilities to model this optimization problem include heuristics such as evolutionary
algorithms (genetic algorithms, or differential evolution, for example). Additionally to the
optimization procedures, identification techniques, such as artificial neural networks (ANN),
can also be used for this inverse problem, by setting the desired location and size of the
damage as parameters.

3. The modeling of uncertainties: some variables involved in the process (such as the
aerodynamic loads), do not present determinist values and must be treated as random
variables. Also, some parameters of the structure, such as the elastic properties and
constitutive behavior, are also non-deterministic and must be identified. The treatment of the
stochastic nature of the problem leads to parameter identification procedures (such as
Kalman filter identification, for example) and to stochastic optimization procedures (such as
response surface methodology or Monte Carlo simulation). Procedures to obtain the response
surface might include design of experiments combined with regression, or the learning of the
structural behavior through a neural network procedure.

The research covered a three-year period (from 2006 to 2009), as a collaborative effort between
researchers working in the computational mechanics area from UNIFEI (Federal University of
Itajuba) and UNICAMP (State University of Campinas), both in Brazil. During the three years of
the project, the research also lead to advising graduate students, both at UNICAMP (with the
research concentrated in the study of the behavior of cracked composite plates using boundary
element methods) and at UNIFEI (with the research concentrated in the use of deterministic and
stochastic optimization and identification techniques for a given direct modeling (elasticity and
acoustics, for example).

The modeling of uncertainties was incipient in this work, and is an on-going effort, which is
planned to continue as a collaborative research work. Also, a combination of FEM and BEM as
direct models was not covered in this research project, and is being planned as an on-going
research work, too.

1.5 Resources / Research team

e Professors Ariosto Bretanha Jorge (Pl — Principal Investigator) and Sebastido Simfes da
Cunha Jr. (UNIFEI);

Professors Paulo Sollero and Eder Lima de Albuquerque (UNICAMP);

Students from the Computational Mechanics groups (both from UNIFEI and UNICAMP);
Computational mechanics laboratories at UNIFEI,

Computational mechanics laboratories at UNICAMP.
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1.6 Air Force Relevance

This research investigates numerical models for detection of damages in aircraft structures. The
timely detection of damage is an important feature for flight safety. This research is also relevant
in aircraft maintenance, with the possibility for using such on-board structural health monitoring
system as a substitute for some costly structural inspections during regular, scheduled
maintenance.

1.7 Cost / Funding

For this project, a grant of U$70,000.00 was awarded (U$ 20,000.00 for the first year, and U$
25,000.00 per year, for the second and third years). The funding was directed to finance research
expenses (both for the researchers and the students), evenly divided for each university, during
these three years of collaborative work. Expenses covered included stipends for students, and
also general expenses related to the project (for example, travel expenses, computers, software,
computer consumables, books, etc).

1.8 Contact Information for the P.I.

Prof. Dr. Ariosto Bretanha Jorge

UNIFEI - Universidade Federal de Itajuba

Instituto de Engenharia Mecanica

Av. BPS 1303

37500-903 - Itajuba, MG - Brazil

Tel (Brazil): +(35) 3629-1462 (office); +(35) 3629-1152 (secretary);
Fax: +(35) 3629-1148 (secretary)

Email: ariosto.b.jorge@unifei.edu.br

Home page: http://www.gemec.unifei.edu.br/ariosto/

2. Research description
Modeling the damage detection problem: general aspects

The detection of damage (or failure) in structures is an important area in engineering, with
several fields of application, among which one can point out: flight safety and aircraft
maintenance, piping and containers in the oil industry, structures in nuclear power plant industry,
etc. The development of damage detection techniques can bring up technological advances in
order to increase the structural reliability (safety), contributing to a better structural integrity
analysis and to a better evaluation of the remaining service life (or useful life) of a structure. The
analysis of a damaged structure must involve the numerical treatment of data gathered from
sensors spread throughout critical points in the structure, and the comparison of this data with
numerical results used as reference (for example, results from the same structure without damage
of with given (known) damage). These damage detection techniques could involve monitoring
(in real time) of the integrity of structural elements which are critical and are difficult to access
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(poor accessibility), such as some elements in an airframe, or in an oil piping, or in nuclear or oil
installations.

2.1 Damage detection: overview of the Direct and Inverse Problems

To analyze a damage detection problem in a structure, first the modeling of the direct problems
is required, to obtain the behavior of this structure in the presence of one or more pre-established
damages, with assumed format and size, and at given positions (see references [4] e [5] for
damage detection problems).

In this work, two methods of analysis were given particular attention, for the direct method:

1) The study of the stress and strain distributions in structural elements, performed through the
BEM (boundary element method) modeling of elastostatics problems (for defects modeled as
holes in the structure) or through the BEM modeling of linear elastic fracture mechanics
problems (for cracked structures) (see references [6] to [13] for the boundary element method
applied to fracture mechanics);

2) The study of the distribution of some scalar field throughout the structure, modeled using
BEM. For problems governed by the Laplace or Poisson equations, a potential field, such as the
temperature distribution, is the quantity of interest. Other potential fields, such as the sound
pressure in the structure due to sound waves (emitted from a pre-established source) were also
investigated. The presence of the defect in the structure influences the distribution of these scalar
fields. BEM models were used both for Laplace / Poisson problems (heat transfer by conduction
in the structure) and for the modeling of the acoustic problem (see references [14] to [17] for the
boundary element method applied to acoustics).

The study of other modeling approaches is being planned as an on-going research work, and is
not covered in this report. The methods of interest, for this future research, include damage
detection approaches based on vibration analysis, and also based on a combination of Finite
Element and Boundary Element Methods as a FEM/BEM direct model (the BEM model being
best suited for large gradients in the field being considered, while the FEM accommodating well
properties/material changes throughout the structure).

For the study of the inverse problem, the model consists of two parts:

a) Monitoring the structural integrity, from experimental measurements, with a certain
number of sensors spread throughout the structure. With this, some knowledge is
obtained about the distribution of stresses or strains (for example, by means of strain-
gages) or about the distribution of a variable derived from the acoustic pressure
throughout the structure (for example, by means of microphones, accelerometers, or other
Sensors).

b) Computation of a functional obtained from adding differences (evaluated in all
measurement points) between the values evaluated using the numerical model from the
direct problem, for a given damage that was assumed, and the experimental values
measured in the same points for the structure with the real damage or crack. This
functional is a function of the crack or damage location, either numerical or measured
from the real structure. This functional is expected to increase in value when the assumed
numerical defect is far away from the real defect. Also, this functional is expected to
reach its minimum value when both defects (for example, the numerical and real cracks)
coincide. Thus, the inverse problem is, in fact, an optimization problem for the search of
a global minimum for this functional. In this work, local optimization methods (such as
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linear or quadratic sequential programming) were used to compare with global

optimization heuristics (such as genetic algorithms and differential evolution).
The study of the randomness of the variables involved in these problems is of great importance,
in order to the computational modeling being used to be representative of the real structure. The
study of the randomness was incipient in this work, using stochastic optimization techniques. To
account for these uncertainties, future work is planned, for the use of parameter identification
techniques (such the Kalman filter approach), together with the treatment of the uncertainties of
the variables (using fuzzy optimization techniques) or the treatment of the randomness of these
variables (using stochastic optimization techniques, such as response surfaces, or using Monte
Carlo simulation).

2.2 Direct Problem

The boundary element method is a numerical procedure well adapted for the modeling of a
cracked structure made of an isotropic material (aluminum, for example) or made of orthotropic
materials (such as composite materials). In this method, the distribution of the quantities of
interest in the domain is obtained from the information of the distribution of some quantities in
the boundary. Thus, in this method, the problem is described based on what happens in its
boundaries, reducing the dimension of the problem and simplifying numerically the treatment.
Furthermore, the boundary element method offers an additional advantage for the fracture
mechanics problem, as the scalar and vector fields of the variables of interest can be described
with reasonable accuracy, even when these fields are singular, as it is the case for the stress field
near the crack ends (near crack tip in 2D, or near crack contour in 3D).

In the case of the approach for the damage detection problem made by means of the analysis of
the acoustic response of the structure under excitation, perturbations in the expected response
imply in the presence of damage. Thus, the defects and damage in the structure shall characterize
its dynamic behavior. The modeling of the direct problem may include also the study of the
damage evolution through time (such as, for example, the velocity of crack propagation), in
order to estimate the remaining useful life (safe life) of the structure.

2.3 Inverse Problem

The inverse problem might be modeled by means of optimization techniques or by identification
techniques. In the following discussion, some aspects of these techniques are detailed. For the
discussion, a simple Laplace problem for the distribution of a potential field in a domain is
considered. The damage is simulated by the presence of small holes in the domain, and the goal
is to obtain the size (diameter of the hole) and the location (vector position of the center of the
hole) of the damage.

The direct method (BEM) provides one piece of information (the potential) for any desired point
in the domain. Without the hole, the distribution of the potential is known a priori. If a small hole
is included, the potential distribution is unknown and must be obtained numerically from the
BEM solution. The goal in this problem is to implement two inverse methods (optimization and
identification) and to discuss the difficulties in the implementation and advantages of each
method, to find out which one is more appropriate to solve the problem. The results obtained for
the inverse method by means of this two independent techniques (genetic algorithm (GA) for the
optimization procedure and artificial neural networks (ANN’s) for the identification procedure)
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are compared to analyze the efficiency of each method in finding the location and dimension of
the hole.

Increasing the problem complexity, the BEM for the elasticity problem can be used, with some
given boundary conditions for the displacement and traction. Differently from the BEM for the
potential, the BEM for elasticity (in a 2D problem) provides two pieces of information at a single
interior point — one normal stress and one shear stress. But this information cannot be used
directly in the optimization problem, as it depends on the system of coordinates being used, or on
the normal direction of the cutting plane that passes through the point of interest. Therefore, a
choice was made to adopt the stress invariants of the stress tensor at the point of interest— in 2D,
the mean stress and the octahedral stress — as the vector field to be analyzed and used in the
optimization problem.

A comparison of different (and independent) optimization and identification techniques for this
inverse problem of damage detection is also desirable, to check for the robustness of the different
approaches in finding the damage. The global optimization techniques that can be used include:
genetic algorithm (GA), differential evolution (DE), ant colony (AC), etc. The parameter
identification techniques that can be used include: artificial neural networks (ANN’s) and
Kalman filter (KF).

In order to increase the complexity of the damage detection problem using the BEM formulation
for elasticity, the goal could be to identify and locate (using one or more of the inverse problems
approaches) the presence in the plate of one or more circular holes (number of holes, radius and
location of each hole) and also one or more ellipses (number of ellipses, axis orientation and size
(large and small axis) and location of center for each ellipse). To increase even further the
complexity of the damage detection modeling, the BEM for fracture mechanics can be used, in
order to locate cracks in the plate (number of cracks, and their size, orientation, and location).
For all the different direct problems, the same global optimization techniques and/or parameter
identification procedures can be used to solve the inverse problem for damage detection. From
the point of view of the inverse problem, the direct model is just a ‘black box’ to be supplied to
give the numerical information needed to be used in the optimization or identification procedure.
The starting point in the research is to analyze and discuss the detection of just one hole in the
structure. Later in the research, by modifying the implementation of the inverse problem, the
model would be able to detect more than one damage in a particular structural element.
Concomitant to this research, several different configurations for the direct problem are
evaluated (BEM for cracked orthotropic materials, material interfaces, etc). The goal is to
implement BEM codes representing situations that emulate better a real aircraft structure
(including structural patches, reinforcements, etc). These BEM formulations for the direct
problem are being developed mostly by the researchers at UNICAMP. On the other hand, the
implementation of the inverse method is being developed mostly at UNIFEI. The two research
fronts are under way in parallel, so that the final code would include as many direct codes as
possible (to allow for a representative number of possible combinations of damages / airframes
to be evaluated), as well as a number of different (independent) inverse models, to increase the
reliability in the damage information (quantity, location, and size).

Damage detection by means of optimization techniques

In an experimental analysis, the data gathered come from sensors spread throughout the
structure, located at a number of points. The experimental analysis is not being undertaken at this
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moment, thus the size and location of the real damage in the plate are being assumed and
simulated by using the BEM. In this first example problem, BEM for the potential is being used,
and the temperature values at some interior points replace the information that would have been
collected by the sensors at these points in the plate.

In order to solve the inverse problem for damage detection, an optimization algorithm (GA, for
example) is used. The evaluation function (fitness function) for the GA is formulated as a
functional defined as a difference between measured values (simulated, in this case) of the local
difference in the potential (between the undamaged plate and the plate with the damage) and the
values of the same differences in potential calculated at the same points by the damage detection
code (assuming several different locations and sizes for the ‘numerical’ damage). The
minimization of the functional allows the damage detection code to find the unknown parameters
of the damage. A general formulation for the functional is shown in Equation (1).

n

J, = %iz_l:(measuredi —calculated ;) (1)
Where:

n - Number of sensors placed in the plate (number of internal points i where differences
are evaluated);

measured; - Vector of simulated values for the differences in potential (obtained using
BEM, these values represent the values measured in the plate points for a given damage location
and size);

calculated;i - Vector of values for the differences in potential calculated by the damage
detection code for each individual j.

Figure 1 represents an undamaged thin plate with four sensors indicating the points where the
measurement of the quantities of interest (differences in potential, in this case, or stresses, for
example, in the elasticity case) is being performed.

Figure 1 — Undamaged plate with four representative sensors

In order to solve the damage detection problem, an initial population is given to the GA. This
initial population is formed by individuals which constitute a possible solution for the problem.
These individuals are represented by chromosomes which are themselves constituted by genes.
Each gene in a chromosome represents one variable in the problem (for example, the x and y
coordinates and the radius r of the hole). As an example, Figure 2(a) to 2(c) represents three
possible configurations of chromosomes. While the location and size of the hole varies, the
number of sensors and their locations are always the same, for all chromosomes (these are also

10
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the locations of the ‘real’ sensors for the measurements). The information on the quantity of
interest is collected at these sensor locations for all cases.

Figure 2 — Plate with a hole: three possible configurations for the chromosomes

Some of the plate properties (such as material properties and geometry) may not be known
exactly a priori (due to randomness in the manufacturing or fabrication processes, for example).
Material properties (such as elasticity modulus E, and Poisson’s ratio o, in the elastic problem)
and geometric parameters (see Figure 3, for example) are suited to be obtained in the real
structure by means of parameter identification procedures (such as ANN, for example).

Figure 3 — Plate geometry: possible parameters to be identified

Other variables (such as the loading (shown in Figure 4) and the boundary conditions) may
contain uncertainties and randomness and may need to be treated as random variables in the
damage detection code.

Figure 4 — Loading: possible variables to be treated as random

11
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Also, the number, size and location of the different damages may need to be treated either by
parameter identification or as random variables.

For a straight crack, its parameters may be (see Figure 5):

- size = a;

- orientation = 6,

- position = (Xo,Yo).

Figure 5 — Crack parameters: size, orientation, position

The treatment of randomness is detailed in the next session (Modeling of Uncertainties). A result
expected from the on-going research is the discussion on which method for modeling of
uncertainties (identification procedures versus probabilistic methods) is best suited for each of
the different variables and parameters of the problems.

For the transition from the plate with a hole to a cracked plate, the direct model using BEM is the
only subroutine that changes in the code (from BEM for elasticity to BEM for linear elastic
fracture mechanics). The procedures for the inverse problem (either optimization or
identification techniques) remain unchanged. Thus, for the simulation, the position, orientation
and size of the ‘real’ crack are assumed (see Figure 6). Also, the numerical solutions for the
different chromosomes are obtained in the same way as before (see Figure 7 for three possible
chromosomes).

Figure 6 — Cracked plate: size, orientation, position of the ‘real’ crack (simulated, in this case)
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Figure 7 — Cracked plate: three possible configurations for the chromosomes

2.4 Modeling of Uncertainties

This part of the research involves the numerical modeling of an engineering optimization

problem with two basic features:

i) the various parameters and variables of the system being studied are not deterministic,
and a proper treatment of this variability leads to robust optimization techniques, where
the goal is to obtain not only optimum values for the objective functions, but also
minimum variations in these objective functions in the neighborhood of these optimum
points. In this context, the words ‘stochastic optimization” and ‘robust optimization’ lead
to the same idea, as the goal of the treatment of the stochasticity of the variables and
parameters of the problem is to obtain robust optima. In this case, the optima are points in
the feasible region, wherein the values of the objective functions are insensitive to
variations around these points;

i) the fact that the model has to look not only for the optimum values of the objective
functions but also for robustness (that is, a small variability of these objective functions
around these optima) shows that, in each problem, there is always more than one
objective function. Thus, there is a need for decision-making procedures with respect to
these multiple objectives, which may involve the use of different multiple-objective
optimization techniques, such as weighting, prioritizing (goal programming), the use of
objective functions as constraint equations, the use of fuzzy membership functions,
obtaining Pareto limiting regions or curves, etc.

Thus, the modeling of uncertainties of the damage detection problem in an aeronautical structure

involves stochastic multi-objective optimization techniques in the modeling of the inverse

problem.

Modeling the multiple-objective optimization problem: general aspects

The traditional optimization methods usually treat the variables of the problems as deterministic.
For a review of traditional calculus-based algorithms (for the search of local optima), see
references [18] and [19].

Heuristics that search for global optima have been proposed in the literature, several of which
based in the imitation of behaviors found in nature. An example of this is the ‘survival of the
fittest’, found in heuristics such as evolutionary algorithms, genetic algorithms, differential
evolution, particle swarm optimization, etc (see references [20] to [27]).
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But in several cases, these algorithms still consider as deterministic the problem variables (for
example, the loading, boundary conditions, material properties, geometry etc) and/or parameters
(for example, the coefficients in the objective functions or in the constraint equations).

Treatment of stochasticity of variables and parameters

The modeling of stochasticity both in the variables and in the parameters of a problem involves
the use of probabilistic methods in engineering, such as Monte Carlo simulation, Response
Surface techniques, Design of Experiments, First Order Reliability Methods (FORM) or Second
Order Reliability Methods (SORM), logistic regression, etc.

The stochasticity can be also used in identification procedures in two steps: first, a set of random
information is used to identify the system parameters (for example, via Kalman filter), and
second, an independent set of stochastic data is used for the treatment of the random variables of
the problem (see references [28] to [32] on different probabilistic methods in engineering).

Decision techniques in the treatment of multiple objectives

Decision techniques regarding the multiple objectives of an optimization problem may include:
weighting, assignment of priorities, the use of objective functions as constraint equations, the use
of fuzzy membership functions in the decision-making process, obtaining regions or curves of
Pareto limits, etc.

In certain cases, objectives of different natures may need to be considered, and their combination
(through weighting, for example) may not be possible. For example, on a particular problem, one
objective may happen to be written as a real function, while another objective may involve only
integer numbers, and a third objective may involve only a qualitative response. In this case, a
promising technique for a proper combination of these objectives of different natures could be
the use of fuzzy membership functions for each objective function, looking for the optimization
of one function only, namely, the summation of all the fuzzy membership functions. This
technique could even allow the designer to include a bias through one or another objective
function, if this is considered necessary (see references [33] and [34] on the use of fuzzy logic in
optimization).

3. Main accomplishments

This research is a collaborative effort between the Computational Mechanics groups at UNIFEI
(Itajuba) and UNICAMP (Campinas). The research on the direct problem has been performed
under supervision of Professors Paulo Sollero and Eder Lima, at UNICAMP, while the research
on the inverse problem and on the modeling of uncertainties has been performed under
supervision of Professors Ariosto and Sebastido Simdes, at UNIFEL.

As results directly related to this research, several publications and monographs were obtained,
as detailed in the Appendix. The publications were concentrated on conference papers and
journal articles, while the monographs were concentrated on thesis and dissertations defended by
the students working on the research groups, both at UNIFEI and UNICAMP. Besides the
published work and the defended thesis and dissertations, some research papers and student
thesis/dissertation defenses are also expected to occur in the near future, related to this work. The
list in the Appendix includes the on-going research, leading to student dissertations / thesis.
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3.1 Main accomplishments on the direct and inverse models

Throughout the research project, the complexity of the modeling of the direct and inverse

problems has increased, pursuing two goals:

e The goal for the direct model is to be improved in order to reproduce as close as possible the
reality of an aircraft structure.

e The goal for the inverse model is to be as reliable as possible. For that, a combination of
independent optimization and identification procedures is deemed necessary. The reliability
of the damage detection procedure is expected to be high, if two or more independent
approaches indicate the same location and size for the structural damage.

In addition, the current inverse models already include some stochastic modeling, but the proper

treatment of the uncertainties is an on-going research, and is also the object of collaborative

research planned for the near future.

The main accomplishments of this research project can be summarized as follows:
e For the direct problem:

o BEM models implemented: cracked composite plates with repair patches (static and
dynamic), evaluation of adhesive shear stress, anisotropic fundamental solution using
numerical integration (Radon transformation);

o Comparison between Dual Reciprocity BEM and cell domain integration to treat
remaining domain integrals (due to the shear interaction forces).

e For the inverse problem:

o Damage detection algorithm implemented for standard BEM models (potential,
elasticity, acoustics);

0 Optimization methods (Sequential Quadratic Programming — SQP; Genetic
Algorithms - GA) and identification techniques (Artificial Neural Networks - ANN)
were compared for structures with deterministic parameters.

The models implemented are detailed in the several published works (conference papers and
journal articles) cited in the Appendix. Some illustrative results for the direct model research are
shown below, in Figures 8 to 11. Figure 8 shows the boundary element model for a cracked plate
with a composite patch. The remaining domain integrals (due to the shear interaction forces)
need to be evaluated either by a Dual Reciprocity approach of by cell domain integration.

LLQL?HL’IHHJQM?ML}‘

Figure 8: Circular composite patch over a cracked square sheet: BEM model
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Figure 9 shows the stress distribution obtained with the BEM model. The presence of the circular
patch has alleviated the stresses on the cracked region of the plate.
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Figure 9: Circular composite patch over a cracked square sheet: stress results using BEM

Figure 10 shows a representation of the problem being modeled, in which there is an adhesive
layer between the composite patch (anisotropic) and the metallic plate (isotropic). The adhesive

layer was treated in the BEM model implemented.
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Figure 10: Dynamic analysis model: plate, composite patch, adhesive layer

Figure 11 shows the numerical integration results to obtain the anisotropic fundamental solution
in 3D using the Radon transformation, pointing out the need to increase the number of Gauss
points in this numerical integration, in order to obtain a proper reconstruction of the smooth

anisotropic fundamental solution, to be used with the BEM formulation.
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Figure 11: Anisotropic fundamental solution 3D: numerical integration requires 30 or more
Gauss points.

Regarding the research on the inverse model, some illustrative results are shown below, in
Figures 12 to 14. Figure 12 shows the convergence pattern of the inverse method using the
genetic algorithm (GA) as the optimization approach, and the BEM model of the Laplace
equation as the direct model for the potential distribution along the plate. Besides the usual
operations of mutation and cross-over, the use of elitism improves the accuracy of the damage
localization results.

D L L
] 1 2 3 4 i i

Figure 12: Influence of GA parameters: high elitism is better

-

Figure 13 shows the convergence pattern of the inverse method using the genetic algorithm (GA)
as the optimization approach, and the elastostatics BEM as the direct model. The localization
results present smaller variability when the distribution of a scalar quantity along the plate is
used (in this case, the mean stress or the octahedral stress, which are the invariants of the stress
tensor), instead of a vector quantity (in this case, the stress components, which are direction-
dependent).
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Figure 13: Stress invariants: better results (less variability) than stress vector components

For the acoustics model, the acoustic pressure is a potential field. This acoustic potential at a
particular location (the sensor location) is a function of time, and can be measured for the case of
the real hole, and can be simulated using BEM, for the case of the numerical hole. A functional
can be built as differences in the areas below the curves of the potential for the real and measured
cases. Figure 14 shows that this functional correlates directly with the distances between the
numerical and the real hole (the value of this functional gets smaller as the numerical hole
approaches the real hole).
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Figure 14: Acoustics model: “numerical” holes approaching the “real” hole. The inverse model
identifies the numerical hole closest to real hole.

3.2 Establishment of collaborative research work (on-going work)

The research on the modeling and simulation of the inverse problem has involved some
collaborative work with Prof. G. Walker and with Professor P. K. Basu, both from Vanderbilt
University (Nashville, TN). This collaboration was very important for discussing modeling
techniques for the inverse problem. Furthermore, this collaboration has created a synergy
between the computational mechanics group from UNIFEI in Brazil and VVanderbilt University,
important for the planned modeling of the uncertainties of the damage detection problem.
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To accomplish this collaborative work, Prof. Ariosto spent some time in 2009 at Vanderbilt
University, as a visiting scholar, while continuing to coordinate the research work being done by
the students and researchers from the UNIFEI research group, in Brazil. Funding for the
expenses of this visit to Vanderbilt University was obtained through a Brazilian agency, CNPq.
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Note: the above three journal articles are attached at the end of this report, for completeness.
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Prof. Paulo Sollero. Co-advisor: Prof. Eder Lima de Albuquerque. Defense date: November
2007. (Prof. Dr. Ariosto Bretanha Jorge acted as committee member for the defense).
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Abstract. A boundary element formulation for the analysis of isotropic cracked sheets, repaired
with adhesively bonded anisotropic patches is presented. The sheet and the patch are modeled using
the boundary element method. The crack in the isotropic sheet is modeled using the dual boundary
element method. The interaction between the isotropic sheet and the patch is modeled considering
shear body forces uniformly distributed on the interaction zone using a linear elastic relationship. Two
different techniques are used in the present boundary element implementation to treat the domain
integrals that arise in the formulation due to shear interaction forces. These techniques are the cell
domain integration and the dual reciprocity boundary element method. Examples show that results
obtained for the shear stress distribution in the adhesive layer are in good agreement with analytical
solution.

Introduction

Adhesively bonded composite patches are increasingly used in aircraft structure repairs in order to
extend the life of cracked structures and avoid high expenses owing to the replacement of cracked
components. In aeronautical applications, when a non-destructive technique detects a crack, it is
usually necessary to drill the crack tip region in order to decrease the stress concentration and then
apply a layer of adhesive patch on this region to avoid the crack growth. The patch transfers the load
from the cracked structure to the repair, avoiding crack opening and crack propagation. The main
advantages of bonded patches, when compared to other types of repairs such as riveted patches, are
the homogeneous load transfer between the cracked plate and the repair and the absence of holes,
which are stress concentrators, as shown by Rose and Wang [1].

Bonded patches in cracked structures have been studied by many researchers. In general, the sheet,
the patch, and the adhesive layer are considered to be thin, so that the whole component does not
bend out of its plane, and the problem can be solved using the two dimensional elasticity theory. The
initial works analyzing isotropic patches in structures were presented by Erdogan and Arin [2] and
Ratwani [3], in the seventies. These works presented the study of bonded repairs in infinite plates with
cracks. They used analytical solutions for the deformations and displacement compatibility between
the cracked plate and the repair.

Mitchell, Wooley and Chwiruth [4] used the finite element method (FEM) to study the reinforce-
ment of plates induced by the application of repairs. They used two-dimensional finite elements with
constant stress distribution and the plate and repair were coupled through nodes where conditions of
displacement compatibility were imposed. They also analyzed the presence of a crack in the plate.
However, they did not consider the stress singularity at the crack tip and did not evaluate the stress
intensity factors. Jones and Callinan (see References [5], [6], [7]) used the FEM for the analysis of
metallic plates repaired with a layer of composite material. They developed a stiffness matrix to
couple the plate, the adhesive layer, and the composite repair. Special singular elements were used at
the crack tip.

Young, Cartwright and Rooke [8] modeled the cracked plate and the repair using the boundary
element method (BEM). Shear stresses in the adhesive layer and body forces acting on the plate and
on the repair were modeled using the cell integration technique. A special Green function for domains
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Isotropic sheet

composite
patch

Figure 1: Cracked sheet repaired with adhesive patch

with cracks was used to model straight cracks, which limits the applicability of the model.

Tarn and Shek [9] studied the problem of cracked plates repaired with bonded composite patches.
A spring was used to couple the cracked plate model with the repair model. The repair was modeled
using the FEM and the crack using the BEM. Young [10] modeled the distributed interaction force
between the plate and the repair by discretizing the bonded repaired area using internal cells in the
boundary element formulation.

Salgado and Aliabadi [12] introduced the dual boundary element method (DBEM) to model the
metallic cracked plate and the boundary element method to model the metallic repair. The distributed
forces between the plate and the repair were modeled using the dual reciprocity boundary element
method (DRBEM). This formulation was applied by Salgado and Aliabadi [13] to the analysis of
metallic thin plates reinforced with bonded isotropic repairs. The reinforced plate was modeled using
the BEM. Shear stresses in the adhesive layer were modeled as action-reaction body forces exchanged
between the plate and the repair. Widagdo and Aliabadi [14] extended this formulation to model me-
chanically fastened composite repair patches. The fasteners were considered as linear springs coupling
the cracked sheet and the anisotropic repair and their interaction loading was modeled as a summation
of discrete point forces. Widagdo and Aliabadi [15] apply this formulation for the analysis of cracked
sheet repaired with adhesively bonded orthotropic repairs.

The current work analyses a composite repair patch adhesively bonded in a metallic cracked sheet.
The DBEM is used to model the isotropic cracked sheet and the BEM is used to model the anisotropic
composite patch. The interaction loading between the sheet and the patch is modeled considering
the shear forces in the adhesive layer uniformly distributed using a linear elastic relationship. Two
different techniques are used to treat domain the integrals that arise in the formulation due to the
interaction shear forces: the cell domain integration and the DRBEM.

Numerical examples of the adhesive stress analysis in cracked plate, repaired with a circular and
rectangular composite patches, are presented. The shear stress distributions obtained with the current
techniques are compared to the analytical solution of Rose [16] with good agreement. Stress intensity
factors are calculed using the displacement extrapolation technique.

1 Boundary element formulation

Figure 1 presents a finite isotropic sheet, containing an inner crack and an adhesive patch. In this case,
the interaction forces can be treated as unknown body forces exchanged by the sheet and the patch in
the attachment sub-region. Considering that the sheet and the patch remain flat after deformation,
the two-dimensional elasticity theory can be used to model this problem. In this case, displacements
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at the sheet and at the patch have to be compatible with the shear deformation of the adhesive layer
connecting them.

When the sheet is deformed due to applied loads on its boundaries, interaction forces occur be-
tween the sheet, with contour I'g, and the repair patch, with contour I'p (see figure 1). In this
two-dimensional case, interaction forces in the plate directly underneath the repair patch, and in the
patch itself, can be treated as unknown body forces (action-reaction pair). As shown by Salgado and
Aliabadi [13], the boundary integral equation for the displacement of a source point x* on the sheet is
given by:

ci( /T*Sxx x)dl' = /U*Sxx > (x)dl +
/U*S x',x) b7 (x) dQg i,j=1,2 (1)
hs
where cS is a coefficient which depends on the position of the source point in relation to the boundary of

the sheegc Is; U*S (x',x) and T*S (x',x) are Kelvin’s isotropic fundamental solutions for displacements
and tractions, respectlvely, for the two-dimensional sheet media; uf
traction vectors at the boundary of the sheet; bf are interaction forces exchanged between the sheet
and the patch in the domain Qg of the patch; hg is the thickness of the sheet.

Similarly, the displacement of a source point x’' on the repair is given by:

and tf are displacement and

ek (%) —|—/T*Rxx R (x') dT = /U*R(x x) 1 (x') dT" +
r
1 *R .o
/U (x',x) b (x') dQp i,j=1,2 (2)
hr
Qr
where cR is a coefficient which depends on the position of the source point in relation to the boundary of

ij
the sheet I'g; U*R(x x) and T*R(x x) are anisotropic fundamental solutions for the two-dimensional

composite repair; u] and tf are displacement and traction vectors at the boundary of the repair; bf
are the interaction forces exchanged between the sheet and the patch in the domain Qg of the patch;
hg is the thickness of the sheet.

In this work, the anisotropic fundamental solutions for two-dimensional elastic media was used to
model the mechanical response of the composite patch (see Aliabadi and Sollero [17]).

The crack in the isotropic sheet was modeled using the DBEM. The traction integral equation is
applied in one of the crack faces and the displacement integral equation is applied in the other crack
face. The traction integral equation is given by:

515 )+ e () [ 85 6! x)u ()T = i (x >/Dmk( x) 5 (x)dr +
T's s
- / Difi ()0 () dn i = 1,2 g

where S} 2 (x/,x) and Dy; S (x/,x) are linear combinations of derivatives of fundamentals solutions for
traction and displacement ﬂ’g-R(x’ ,x) and U;}R(x’ ,X), respectively, and n; are the components of a unit
vector outward to the boundary in the collocation point.

Now, considering a uniform shear deformation through the adhesive thickness, as proposed by
Salgado and Aliabadi [13], and neglecting shear deformations in the sheet and in the patch, the body
force bj(x’), that is equal to the shear stress in the adhesive 7;(x’), can be written as a function of
the difference Au; between the displacements uf of a point x’ (x' € Qg) on the sheet and uf of a
corresponding point on the repair patch, as:
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where h 4 is the thickness of the adhesive layer, G 4 is the transversal stiffness modulus of the adhesive
material.

2 Domain integral techniques

As can be seen, equations (1) and (2) require the calculation of domain integrals. Two different
techniques were used and compared to treat the domain integrals that arise in the formulation due

to the shear interaction forces. These techniques are the cell domain integration method and the
DRBEM.

2.1 Cell domain integration

In the cell domain technique, the attachment region Qg is subdivided in elementary cells. The distri-
bution of the shear stress 7;(x’) in the adhesive is described in terms of nodal values associated to each
cell. In this work two types of cells were used. Since there exist two coincident nodes at crack elements
(one for each crack edge), these nodes can’t be used as collocation points because no coincidents nodes
exist in the patch. Then, constants cells with a central node has been used to aproximate the shear
stress distribution at neibourghood of the crack. Nine node quadrilateral isoparametric cells were used
to approximate the variation of the adhesive shear stress in the remaining attachment area.

Consequently, in the cell integration method, the domain integral in the equation (1) can be
expressed as (see Salgado and Aliabadi [13]):

1 ncells

EQ{U*S(x ,X) bj (x) dQR_— ];Q{U*S x', %) bj (x) dQ (5)

and the integration is carried out on each cell. Using equation (4) and the bi-quadratic isoparametric
approximation proposed in this work, we can write:

ncells ncells

h / U;iFbj (x) dQy, = h— / U NdQ; | ay (6)
S k 14 S

T
where, N is the matrix of bi-quadratic Lagrange shape functions and a; = {ug, uR} is the vector

of nodal displacements at cell k. In this vector, ug refers to sheet displacement at Qg and u® refers
to repair displacements. Similar expression can be obtained for domain integrals at equations (2) and
(3).

In this work the integral on the right hand side of equation (6) is evaluated using ten-point Gaussian
quadrature. However, when the source point x’ is placed within the cell, this integral becomes weakly
singular which will cause numerical error if Gaussian quadrature is used directly. In this case the
integrand in (6) can be regularized at the singular point by substracting suitable singular term, which
may be treated separately as follow (see Young and Rooke [11]):

1 -1

/U;SNjdek ://{U;}SNMJ—AU In(R) J}dgdn
Qp

—-1-1

i) /1 /1111 (R) dé¢dn (7)

—-1-1
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where, R = /(£ —&,)2+ (1 —1,)? . The second integral on the right hand side can be evaluated
analytically. The constant A;; is given by:

1 3—w)

Aij = = ———0ij
J 167 GS J (8)

where (G5 is the shear modulus of the sheet.

2.2 DRBEM integration technique

In the DRBEM, interaction forces are approximated as a sum of unknown coefficients ag multiplied
by approximating functions fj‘-jk(x’ ,X), so that:

D
= > offh (xx) 9)
d=1

The cofficients ozk have no physical meaning. But they are related to attachment shear forces through
equation (4):

D
S ha .
uj (x') — u x') = =G Z f]k <x x) j=1,2 (10)
In this work, a linear approximation function fj‘-jk(x’ ,x) was used for the isotropic sheet:

I (x4 %) = (1 =) (11)

For the anisotropic patch, an approximation function given by Albuquerque, Sollero and Aliabadi
[18] was used:
d _ .. . .
fik = Ciitm [cr (7 m7 i1k + dimOur)] (12)

Finally, the domain integral of equation (5) can be expressed as:

S A\ sd (od
/U* x', x) ()dQR———Zak[c”< )ukj<x)+
/T;;.S (x',x) dif;dT r — /U;;S (x', %) igdeR} (13)
T'r Tr
where ﬂgj and fﬁj are particular solutions for displacements and tractions corresponding to a pre-
defined function f,fj for the sheet. A similar approach was used to model body forces in the patch.
3 Matrix formulation

3.1 Cell integration technique

In matrix form, equation (6) can be written as:

1 ncells

/ U* - Nd | a, = FSu - FSuS (14)

k

hs k=1
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Discretizing the boundary, the equations for isotropic sheet (including traction equation) can be
written in compact form as:

S..S _ 1SS S..S S. R
chc _gctc+Ecud_Ecu

Iuj + Hjul = Gjt7 + Fjug — Fju® (15)

where subindex ¢ and d identify boundary and domain collocation points on the sheet. The matrix of
influence coefficients HS and QS are defined as:

nelem

H° =}’ / T ;dl
e=1 r.
nelem

GS= 3 [Uigr. (16)
e=1 r.

In these integrals, ¢; are shape functions for the elements. In this work, quadratic discontinuos
elements are used to interpolate the displacement and traction variations in the boundaries of the
plate and the repair.

In a similar way, matrix equations for repair can be written as (without considering traction forces
applied at boundary repair):

R..R _ pR..R R..P
Ecuc _Ecu _Ecud

Iu? + Hfu®? = Eu® — FEu” (17)

In this case, similar significance has the H? and G matrices as those in the sheet case. In the
general case, when the sheet and the patch are made of different materials, the F° and F® matrices
in equations (15) and (17) are not equals.

After some mathematical manipulation, the coupling equations for the sheet and the repair using
the cell integration technique can be written as:

s s
o l-{ef ] 19

where MY , M?%Z and QR matrix involving the F matrices for sheet and repair.

3.2 DRBEM integration technique

In DRBEM integration tecnhique, equation (13) can be write in matrix form as:
/ U (x,%) b; (x) dQg = (ﬂsfjs - QSTS) o’ (19)

In this equation, the influence matrices H® and G* are those defined in equation (16) with functions

ﬂgj and fgj approximated within each boundary element by using interpolation functions and nodal
values as done for u}g(x) and tf(x) in equation (15).
Discretizing the boundary, equations for the sheet (including traction equation) can be written in

a compact form as:

Hlu] - Gt} = Ala®

Iuj + Hjud = Aja”° (20)
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where matrix A° is given by: AS = H5US — GTS. In similar way, equations for repair are:

Hl'uf - Gl = Ale”

Iu? + HEuE = AROR (21)

Now, equation (10) can be written in a matrix form for the sheet and the repair as:

h

ug_uR GiESaS

R S ha R _R

u'—u; = —F"«a (22)
Ga

Finally, coupling equations for the sheet and the repair using the DRBEM integration technique
are given by,

0

aoae ) e )] ) (o) "

4 Numerical results

4.1 Circular composite patch over a cracked square sheet

A square sheet whose edge length is 200 mm is subjected to a uniform constant tension of 1 GPa in
the direction of the y-axis. The sheet has a central crack of length 2¢ = 30 mm and thickness equal
to 1.5 mm. A circular repair of radius equal to 30 mm and thickness equal to 1.5 mm is bonded at
the center of the sheet using an adhesive with 0.15 mm of thickness and shear modulus G = 0.6 GPa.
Properties of the sheet and the patch are given in Table 1.
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Figure 3: Normalized shear stress force in the adhesive.

Table 1: Mechanical properties of the sheet and the composite patch

Sheet Patch

Young modulus (E) = 72400 Mpa E; = 25000 MPa

Poissons ratio(v) = 0.3 E, = 208000 MPa
G12 = 72400 MPa
V1o = 0.02

The problem was analyzed using the method of cells and the DRBEM. In both cases, the mesh
comprises of 28 discontinuous quadratic elements on the edge of the plate and on the edge of the
repair. As shown in Figure 2, quadratic continuos cells with nine nodes were used to discretize de load
transfer domain between the sheet and the patch except in crack neighborhood, where constants cells
were used. Ten-point Gauss quadrature rule was used to evaluate the domain integral at quadratic
cells.

Also, figure 2 shows the used DRBEM model. In this model, DRBEM collocations points have
been concentrated near the crack and towards boundary repair. The shear stress distribution in
the adhesive layer obtained using the DRBEM is shown in Figure 3. As was expected, shear stress
gradients appear near crack’s border where the difference between sheet and repair displacements is
higher. Shear distribution map obtained in the model with cells is similar and it’s not show here.

The resultant for the shear stress in the adhesive is showed in the Figure 4 normalized with respect
to the sheet far field stresses (i.e. 1 GPa). This stresses has been obtained using the equation:

™ = 1 T2 4 72 (24)

o0 2x 2y
where oy is the far stresses applied in the y-axis, 7., and 7,, are shear stresses in the z and y-axis
directions. As can be seen in this figure the convergence of the solution is obtained as the number of
internal points increases. Further refining in the boundary mesh hasn’t significantly affects the results.
Obtained results are compared with analytical solution given by Rose [16] for an infinity orthotropic
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Figure 4: Normalized shear stress in the adhesive layer z=0 and 0 <y < R < 1.

patches bonded to an infinity orthotropic sheet for patch with elliptic (circular) geometry:

7 (y) = opAte—Ay) (25)

again, oq is the stress applied in the y-axis (i.e. 1 GPa) and the parameter A is given by:

A2 = (Ga/h4) { (Eshs)*1 + (thR)l} (26)

It can be seen that good agreement was obtained even for relatively coarse internal points grids
when the DRBEM were used. Lower convergence rate to Rose’s solution was found with cell method.

4.2 Rectangular orthotropic patch over a square sheet

Consider a thin aluminium sheet with height Hg = of 254mm, width W = 254 mm, thickness equal to
5 mm with a central crack of length 2a = 13 mm repaired with boron-epoxi patch having dimensions:
W, = 130 mm; H, = 75 mm. The sheet is subjected to a remote uniaxial tensile load of o = 70
MPa, plane stress condition are assumed. The material properties of the plate, patch and adhesive
are showed in table 2.

Table 2: Mechanical properties of the sheet and the composite patch

Sheet Patch

Young modulus (E) = 72000 Mpa E; = 19600 MPa

Poissons ratio(v) = 0.33 E; = 210000 MPa
G2 = 5460 MPa
V19 = 0.3

The problem was analyzed using the cell method. The mesh comprises of 28 discontinuous
quadratic elements on the edge of the plate. A convergence analysis for shear stress in the adhe-
sive layer as function of number of cells and elements at boundary of the repair was performed. Figure
5 shows the used model.
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Figure 6 shows the shear stress distribution in the adhesive layer. Again, shear stress gradients
appear near crack’s border where the difference between sheet and repair displacements is higher.

The displacement extrapolation technique is used for the evaluation of stress intensity factors as
described in Salgado and Aliabadi [13]. When discontinuos elements are used for modelling crack
surfaces, SIF values are extrapolated to the crack tip using relationship (see figure 7):

. T AA rBB’ 4
(e = e (o =) e

Three cases were considered, with 2¢ = 13, 15 and 20mm, respectively. Table 3 shows the stress
intensity factors in mode I obtained with 12 quadratic discontinuos boundary elements on each surface
of the crack. In this table, SIFs are compared with those reported in Belhouari et al. [19].

Table 3: KI stress intensity factor for rectangular orthotropic patch over a square sheet

2a(mm) K;-BEM Kr-Ref.[19] error

13 7.60 8.10 6.17%
15 11.30 11.90 5.04%
20 11.95 12.50 4.40%

5 Conclusions

A new boundary element formulation for modelling cracked sheets repaired with composite patches
was developed. The cracked sheet was modelled with the DBEM and the patch was modelled with
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Figure 6: Normalized shear stress in the adhesive layer.

Figure 7: Discontinuous crack tip element.

the BEM. The interaction between the isotropic sheet and the patch was modeled considering shear
body forces uniformly distributed on the interaction zone using a linear elastic relationship. The cell
domain integration and the dual reciprocity have been used to treat the domain integrals that arise
in the formulation due to shear interaction forces. The DRBEM showed higher convergence rate to
analytical solution than the cell method. It can be concluded that the new formulation can be used
with reasonable accuracy to study the mechanical behaviour of adhesively bonded repairs.
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1. Introduction

Several types of static and dynamic loads and the structural deterioration process can cause different
types of structural damage. The damage can be characterized by a change in the structure, such as the
presence of holes and cracks. The knowledge of the change in the material properties corresponding to the
damage depends on the type of material and on the structural configuration. The proper assessment of the
damage in a structure can be useful to infer its remaining service life. The assessment of the structural damage
can be performed through a comparison between measured and simulated data. To provide the simulated data,
a numerical code is required, in which a direct model of the problem is consistently used by an inverse
problem algorithm. For the direct problem, a model is required to obtain information on the distribution of the
quantity of interest throughout the structure, given the boundary conditions and the presence of the damage.
For the inverse problem, a model is required for the procedure of locating the damage in the structure given
some (partial) information on the quantity of interest at some particular locations (for example, where some
sensors are placed).

Numerical methods, such as the boundary element method (BEM) or the finite element method (FEM)
can be used for modeling the direct problem. The study or analysis of damage in a plate can be done through
the thermal modeling or the distribution of stresses. In this work, two BEM formulations were used, for
potential and elastostatics problems, respectively. The BEM was chosen in this work, for two main reasons: i)
the problem dimension under study is reduced by one, and only meshing of the boundary is required,
simplifying the process of re-meshing the domain for the various damages being simulated; ii) the integral
representation is an exact formulation, and the numerical errors are only due to the boundary discretization
into boundary elements. For the potential formulation, the potential values are simulated on the external
surface of the plate at given points. These potential values represent the distribution of temperatures on the
plate. The use of thermal techniques shows that the distribution of temperatures on a plate changes due to the
variations in the mechanical properties of the plate, what could be related to the presence of a given damage.
For the elastostatics formulation, the quantities of interest are the interior point displacements and stresses.

The damage detection problem can be considered as a problem of system identification or an inverse
problem. The inverse problem of identifying the presence, location and size of damage, such as cracks and
holes, in a plate structure can be modeled using optimization and parameter identification techniques. In this
work, the genetic algorithm (GA) is used as the optimization procedure, for two reasons: i) the algorithm
looks for a global optimum, and is not trapped in local optima, which may not locate properly the damage; ii)
there is no need to evaluate derivatives of the objective function. Also, in this work, the artificial neural
network (ANN) approach is used as a parameter identification technique, for three reasons: i) ANN does not
require a priori the presence of a Gaussian white noise, as it would be the case of Kalman filters, for example;
i) ANN is capable of representing non-linear problems; iii) ANN provides flexibility in terms of the number
of internal layers to be used. By solving the inverse problem using two independent techniques (GA and
ANN), a more reliable information on the damage parameters can be obtained, as a comparison of the results
from both approaches can provide a means to verify these results.

The presence of damage may induce rapid changes in the field variable of the problem, and even
discontinuities in the governing equation in the domain. Classical calculus-based optimization methods
require evaluation of derivatives of the objective function, which may not be possible to be obtained, or may
be numerically obtained, with unacceptable inaccuracy. Besides, these problems can have several local
minima (multiple solutions), and thus a global optimization method (such as GA) is a better choice for the
numerical solution [1,2]. In [1], the direct mechanical problem is modeled numerically through BEM, and the
inverse problem, to minimize the error (difference between the measured and the computed value), is modeled
in two ways: using sequential quadratic programming (SQP), to obtain a local optimum, and using the GA, to
obtain a global optimum for the same objective function. SQP is a calculus-based optimization method, in



which the second derivatives are required to obtain the Hessian matrix. In [1], the Hessian matrix was
approximated through a finite difference scheme. Also, this method depends on the choice of the starting
point, so the algorithm can stop at a local minimum of the function that may not represent the proper damage
parameters for the problem. On the other hand, GA uses multiple points to search for the solution, rather than
a single point, and a global minimum has a better chance of being obtained. Also, as GA does not require any
evaluation of derivatives, no errors are included in the solution due to the approximation of these derivatives.

In the works presented in [3] and [4], the BEM is also used to model the direct mechanical problem
numerically. A backpropagation neural network (BPN) for the on-line identification of holes or cracks in
composite structures is applied by [3]. In [4], evolutionary algorithms at the identification of crack are used
and the problem is formulated as the minimization of the difference between the measured and computed
values of displacements or stresses for selected boundary nodes. The work presented in [5] proposes a BPN
for the inverse analysis, and a numerical model for the direct method. This direct model is based on a coupling
of the FEM with the boundary integral equation (BIE) method, of which the discretized form is also known as
the BEM. The BPN uses a backpropagation learning rule, where the adjustment of weights, from input to
hidden layers, is made by back-propagating the errors of the neurons, from the output layer to the hidden
layers.

In [6], a new method was developed for finding boundary temperatures and heat fluxes, where both
quantities may be unknown in some parts of the boundary. This technique requires over-specified thermal
boundary conditions, i.e., both the temperatures and the heat fluxes must be specified, on other parts of the
boundary. In this case, BEM was used for the direct model, and the program performed automatic non-
iterative determination of the thermal boundary conditions (boundary temperature and flux) on the parts of the
interior and exterior boundaries where both quantities were unknown. This non-iterative approach was
extended in [7] for elastostatics problems using BEM, for finding deformations and tractions on parts of the
boundary where these quantities are unavailable. Again, the boundary conditions need to be over-specified on
other parts of the boundary, i.e., both the displacements and the tractions must be specified at these other
boundary subregions.

In this work, two direct problems are modeled using the BEM approach in 2D: i) a potential problem
of heat transfer (conduction) on a domain; and ii) an elastostatics problem. In both cases, a damage is
simulated by the presence of a hole inside the domain. For each run of the direct model, the information about
the location and radius of the hole, and also about the boundary conditions, loading, and plate and hole
discretization, is also provided. After evaluating the boundary solution, the BEM code evaluates, as a post-
processing, some quantities of interest at selected interior points. The selected interior points are candidates to
be sensor locations, for a future experimental setting, and the quantities of interest at these points may be the
quantities that these sensors are able to measure. Each run of the direct method using the potential formulation
provides one piece of information (the potential, i.e., the temperature) at the selected interior points. On the
other hand, the elastostatics BEM formulation provides three pieces of information at an interior point — the
components of the stress tensor, i.e., two normal stresses and one shear stress. The values of the normal stress
and the shear stresses depend on the system of coordinates being used, or on the normal direction of the
cutting plane that passes through the point of interest. As the goal of the inverse method is to identify and
locate the hole, but not to identify any direction-dependent properties, the desired quantities to be supplied to
the inverse model should be scalar quantities obtained at the selected interior points, and not direction-
dependent quantities. Scalar quantities of interest can be obtained as the invariants of the stress tensor — in 2D,
the mean stress and the octahedral stress — at the selected interior points. The mean stress and the octahedral
stress are independent scalar fields, and either one can be used as the variable of interest at the selected
interior points. In this work, the mean stress was adopted as the quantity to be provided to the inverse model
for the elastostatics problem.



The boundary conditions for the external boundary of the plate may be set as temperatures or fluxes
prescribed, for the potential formulation, or displacement or traction prescribed, for the elastostatics
formulation. The boundary conditions for the internal boundary of the plate (the hole) were set assuming zero
fluxes, for the potential formulation, and zero tractions, for the elastostatics formulation. For the inverse
problem, the direct BEM model first evaluates the differences in the quantity of interest (the potential or the
mean stress, depending on the problem) between the undamaged plate and the plate with the damage, for all
selected interior points. These differences are then supplied as input to the optimization (GA) or identification
(ANN) subroutines. The main idea for passing only differences of the quantities of interest is to avoid any
possible bias related to the magnitude of these quantities, as only their change (due to the presence of the
hole) is important for the inverse problem. The information provided by the BEM model for the direct
problem is used for comparison with similar information, which must be available, for a plate with a hole with
unknown size and location. Usually, the information on the “real” plate would be available by means of an
experimental device, in which sensors would be put in all selected interior point locations. For the purpose of
validating this approach, the plate with the “real” hole is also simulated with the BEM model, so the inverse
problem algorithm will try to identify and locate this simulated “real” hole. The optimization (GA) and
identification (ANN) subroutines are independent approaches for localization (obtaining the center
coordinates) and identification (obtaining the radius) of a given simulated “real” hole.

In short, the numerical modelling of the direct problem is performed using two different BEM
approaches, for potential and elastostatics formulations, respectively. Also, two different and independent
techniques (optimization using GA, and identification using ANN) are used for resolving the inverse problem
to obtain the damage location and size, for each BEM model. The comparison between the results obtained
using the two different and independent techniques (GA and ANN) for the inverse problem allows for a
validation of the inverse procedure. A redundancy in the results, i.e., similar damage identification and
localization results, from the two different and independent inverse techniques, will provide a good indication
of the correctness of this procedure. A test case using GA, available in the literature, will also be used for
comparison purposes. All subroutines in this work were written using the MATLAB® platform.

2. Direct problem: boundary element methods

Numerical methods, such as the boundary element method (BEM) or the finite element method (FEM)
can be used for modeling the direct problem. In the FEM, the problem domain is partitioned into a number of
subdomains (or finite elements) with connectivity between the elements provided through common nodal
points. In the BEM, the governing partial differential equation of a domain is transformed into a set of integral
equations, which relate the boundary variables (both known and unknown) [8,9]. The BEM has some
advantages with regard to FEM [8]: i) BEM discretization is done only in the boundary of the domain, while
FEM requires the discretization of the entire domain; ii) the number of equations associated with BEM is
smaller than in the FEM approach, for the same degree of accuracy; iii) BEM is well suited for problems with
singularities, such as in linear elastic fracture mechanics.

The BEM is a numerical procedure well adapted for the modeling of a structure with damage. In this
method, the distribution of the quantities of interest in the domain is obtained from the information of the
distribution of certain quantities in the boundary. Thus, the problem is described based on what happens in its
boundaries, reducing the dimension of the problem and simplifying numerically the treatment. In this work,
the models investigated include the potential and elastostatics formulations (see references [9] and [10] for
both formulations). A simple direct method for a conduction problem is modeled, where the temperature
distribution on the external surface of a thin plate is analyzed. Without the hole, the distribution of the
potential is known a priori. If a small hole is included, the potential distribution is unknown and must be
obtained numerically from the BEM solution. Increasing the problem complexity, a BEM model for the



elastostatics problem can be used. Similarly, the distribution of the displacement and stresses without the hole
is known a priori. If a small hole is included, this information is unknown and must be obtained numerically
from the BEM solution. When modeling the damage detection problem by means of an analysis of the elastic
response of the structure under excitation, perturbations in the expected response imply in the presence of
damage. Thus, the damage in the structure will characterize its behavior, static or dynamic.

2.1. Boundary integral equation for potential and elastostatics problems

For the elastostatics problem, the elastic behavior of a body under static loads is governed by the
equilibrium, compatibility and constitutive equations [11]. Considering T as the boundary of the body, an
integral representation of these equations, can be written as Equation (1), for the case with no volume forces

e (Y)u (¥) = [ [u (6 y)a () =g (xy)u, (x) IT(x) (1)
where: g, is the traction vector at a boundary point whose outward normal n;; u, is the displacement vector;
u, and g are the displacement and traction vectors of the fundamental solution, respectively (see references,
[11], [7], [9] and [10] for more details). When the limit to the boundary is taken for the collocation point vy,
the equation is called a Boundary Integral Equation (BIE). The term c; is the free term coefficient, which
depends on the position of the collocation point, relative to the boundary. For an interior point, ¢, =1; for an
exterior point, ¢, =0; for a boundary point on a smooth section of the boundary, ¢, =1/2. For non-smooth

boundary points, the free term coefficient depends on the swept angle at this point, when going from the
boundary region before the point to the boundary region after the point, following the interior domain. By
performing collocation at different boundary points (the nodes), a set of equations is obtained, which can be
discretized to obtain a system of algebraic equations to be solved. The set of equations is completed by the
boundary conditions, u;(x)=0; on T, and q,(x)=g on T,, where ', and ', are non-overlapping partitions

of the boundary I (T,uTl,=T and I',nI', =) ([11,12]). The kernels of the integrands, given by the

fundamental solution and its derivative, lead to weakly-singular and singular integrals, respectively, when the
collocation point and the integration point coincide. Special integration schemes are incorporated in the BEM
code, to account for the evaluation of these singular integrals.

Equation (1) is a component of a vector equation, in the k -direction (k =1,2, in the 2D case). A scalar
boundary integral equation for the potential problem can be obtained as an integral representation, closely
similar to Equation (1), for the case where there are no heat sources in the domain. In this case, due to the
scalar nature of the potential field, the symbol k can be dropped, as shown in Equation (2).

0
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where: c(y) is the coefficient of the free term; u is the potential; g is the flux in the outward normal
direction; y =(1/27)In(1/r) is the fundamental solution for the Laplace equation; r=|x-y| is the distance
between the collocation point y and the integration point x; and, dw/on=—(1/2zr)(or/on) is the flux

associated to the potential y . The boundary conditions are similar to the previous case, with T and @ now
representing known values of the potential and flux on ', and T, respectively [12].

2.2. Boundary element discretization

By evaluating Equation (1) at the collocation points y, by using proper shape functions in the



discretized boundary (in this work, constant boundary elements), and by applying adequate quadrature
formulae for the numerical integration (in this work, 4 Gauss points for each element), a system of linear
equation is obtained as (Equation (3))

[H]{u}=[G]{a} (3)

where {u} and {q} contains the nodal values of the displacement and traction vectors, for the elastostatics

problem, or the nodal values of potential and flux vectors, for the potential problem.

When the boundary conditions of each problem are taken into account properly, after algebraic
manipulation, known and unknown quantities are separated, and a system of linear equations, which can be
solved for the unknown boundary quantities, is obtained as (Equation (4))

[Al{x}={f} (4)
where {x} is the vector of unknown boundary quantities; {f} is the right-hand side, obtained after
manipulating the known boundary quantities with the proper numerical integration coefficients; and [A] is a

matrix with the integration coefficients related to the unknown boundary variables.

After the boundary solution is obtained, by post-processing, the solution for the displacement
(elastostatics problem) and for the temperature (potential problem) at selected interior points is obtained by
means of a particular case of Equation (1), where c; is equal to 1 [10]. As the integral equation for interior

points does not contain singular integrals, special integration schemes are not required in the BEM code, for
this case.
Regarding the elastostatics problem, the internal stresses o can be computed by differentiating the

displacements at internal points and introducing the corresponding strains into the stress-strain relationships
(Equation (5)) (see references [9] and [10]).

oy = 2uy 9 O +ﬂ(%+%] (5)
1-2v " oX, OX;  OX;
where: 4 is the shear modulus and v is the Poisson’s ratio.
After a proper substitution of the value of u, into Equation (5), the internal stresses can be represented in
compact form shown in Equation (6)
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where:
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In Equation (7), «=1, p=2, and y =4 for a two-dimensional case. The derivatives indicated by commas are
taken at a boundary point x® (Equation (8))
=t (8)
toox r®
with r® =x? —x', being x! an internal point and r® =|r|. The derivative shown in Equation (8) is equal and

opposite in sign to those taken at an internal point [9].



3. Inverse problem: optimization and parameter identification techniques

The inverse problem might be modeled by means of optimization and parameter identification
techniques. The damage is simulated by the presence of a small hole in the domain, and the goal is to obtain
size and location of the damage.

3.1. Optimization using genetic algorithms

The genetic algorithm (GA) is a search method based on the processes of natural evolution. This
method works with a set of possible solutions for a given problem, composing the initial population. In other
words, GA uses multiple points to search for the solution rather than a single point in the traditional gradient
based optimization method [13]. In this algorithm the problem variables are represented as genes in a
chromosome (each chromosome is also denominated an individual of the population). Starting from an initial
population, the individuals with better adapted genetic characteristics have higher chances of surviving and
reproducing.

According to [4], the GA's are methods that do not depend on the choice of the initial point, increasing
the chances of obtaining the optimum global of the system. So that the population is diversified and maintain
certain acquired adaptation characteristics by the previous generations, the genetic operators (selection,
crossover and mutation) can be used. These operators transform the population through successive
generations, extending the search until arriving to a satisfactory result. For more details about how these
operators work, see references [14], [15] and [16].

In this work, the optimal solution for unknown parameters of the damage (location and size) is
obtained through the GA for potential and elastostatics formulation. Considering the first formulation
(potential formulation), a functional can be defined as the difference between the measured (simulated) values
of the difference in the potential (between the undamaged plate and the plate with the damage) and the values
of the same differences in potential calculated at the same points by the damage detection program. In the
second formulation (elastostatics formulation), the functional is defined as the difference between the
measured (simulated) values of the local difference in the mean stress (between the undamaged plate and the
plate with the damage) and the values of the same differences in mean stress calculated at the same points by
the code (assuming several different locations and sizes for the “numerical” damage). The functional
corresponds to the fitness function of the GA. The minimization of this fitness function allows the damage
detection program to find the unknown parameters of the damage. The functional formulation is shown at
Equation (9):

J, =%izl:(measuredi —calculated; ) ? (9)
being n the number of internal points i (“sensors” placed in the plate) where the differences are evaluated;
measured; the vector of simulated values for the differences obtained using BEM, for a given damage; and,
calculated;; the vector of differences in potential (potential formulation) or mean stress (elastostatics
formulation) calculated by the code for each individual j.

As mentioned, GA starts with an initial population, representing a set of possible solutions for a given
problem. To solve the damage detection problem, each chromosome (individual) of the population can be
assembled according to the vector presented in Equation (10):

¢=[0; 9, 95 94~ Gn.s] (10)
where:
g1 — first gene representing the x-coordinate of the hole;
g2 — second gene representing the y-coordinate of the hole;



gs — third gene representing the hole radius;
04 ... Ons3 — Tourth gene and the subsequent genes, representing the measures of the potential difference
(potential formulation) or the mean stress difference (elastostatics formulation) between the undamaged plate
and the plate with the damage.

As an example, Figure 1 represents three possible configurations of chromosomes. While the location
and size of the hole vary, the number and location of the sensors remain the same, for all chromosomes. The
information on the quantity of interest is collected at these sensor locations for all cases.
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Figure 1. Plate with a hole: three possible configurations for the chromosomes.

3.2. Parameter identification using artificial neural network

The artificial neural networks (ANN's) are computational techniques that present a mathematic model
to represent the human brain and to try to simulate the learning process of this brain. An ANN is formed by
the interconnected neurons whose inputs can be obtained from the outputs of other neurons or from input
nodes. Different configurations of the artificial neuron can be made to develop different network topologies
[18]. Among the existent configurations, the ANN can be feedforward or feedback. At the feedforward neural
networks, the neurons are interconnected in layers, but the flow of data only occurs in a direction [17]. At the
feedback neural networks, a neuron receives the information of neurons of the previous layer and of a
subsequent layer. After defining the structure of the ANN, an iterative process of weight adjustment of this
network is made. This process is known as training process. Following the training, the ANN learns how to
proceed for other input data in the problem domain.

In this work a backpropagation neural network (BPN) is used, through a feedforward configuration
and the backpropagation learning algorithm. The backpropagation algorithm carries out a supervised learning
where the desired outputs are given as part of the training vector. For more details about how this algorithm
woks, see reference [19]. In addition, there is a training function of ANN known as ‘gradient descent with
momentum and adaptive learning rate function’ (see, for example the MATLAB® help manual). This function
is a backpropagation network training function that combines adaptive learning rate with momentum training.
An adaptive learning rate allows the performance of the steepest descent algorithm to improve, attempting to
keep the learning step size as large as possible while keeping learning stable. Moreover, momentum training
allows a network to respond not only to the local gradient, but also to recent trends in the error surface.
Without momentum a network may get stuck in a flat local minimum.

3.3. Formulation of optimization and parameter identification problems

The problem of damage detection in a thin plate can be formularized as an optimization problem
(using GA) according to the flowchart in Figure 2, or can be formularized as a parameter identification
problem (using ANN) according to the flowchart in Figure 3.

Considering Figure 2, the initial population for the GA approach is formed by the geometric
information of a numerical hole (x- and y-coordinates of its center, and also its radius) and also by differences
in the quantities of interest, calculated at selected interior points, herein called “Difference 1”. “Difference 1”
can be the local difference in the potential or the local difference in the mean stress between the undamaged



plate and the plate with the damage, for potential and elastostatics formulations, respectively. Similarly, a set
called “Difference 2” can be evaluated at the same interior points, representing the “measured” differences for
the quantity of interest at these points, for the “real” hole. In this work, the “real” hole is also simulated. To
validate the damage detection approach, the value of “Difference 2” was not allowed to be in the initial
population of the GA approach. The initial population and also “Difference 2” are employed in the fitness
function, presented in Equation (9). The goal of the GA approach is to look for a minimum value of this
fitness function. For that, the algorithm uses genetic operators to modify the population and subsequently
reevaluate the fitness function for the new population. Convergence criteria can be set, including the number
of iterations, the differences in the fitness function (the optimum value) between two subsequent populations,
or the differences between the hole parameters of location and size (the optimizer) between two populations.
When the convergence criterion is met, the numerical holes have reached the vicinity of the “real” hole, and
thus the information about the location and size of the “real” hole is obtained. In this work, a criterion for the
maximum number of generations (no to exceed 75 in the potential problem and not to exceed 100 in the
elastostatics problem) was assumed, together with a default criterion for the tolerance (difference between two
fitness functions less than or equal to 1x107°).
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plate plate 1 plate plate 2
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Figure 2. Flowchart for the optimization procedure using GA.

According to Figure 3, a network is created, considering “Difference 1” (the same “Difference 1” as in
the GA approach) as the input data and the geometric information for the hole (x- and y-coordinates of the
hole center, and its radius) as the output data. The next step is to train the created network, obtaining, as a
result, a NET that contains information about how to proceed for another input data in the problem domain.
Finally, the trained network is simulated for “Difference 2” (same “Difference 2” as in the GA approach).
Similarly to the optimization algorithm, convergence criteria need to be set for this approach. In this work, the
error goal was assumed, not to exceed 1x10° for the potential problem and 1x107 for the elastostatics



problem. The order of magnitude of these assumed error goals follows the order of magnitudes in the
differences of the quantities of interest, namely the potential and the stress. A convergence criterion in terms
of the maximum number of iterations (not to exceed 5000 epochs) was also assumed. When the convergence
criterion is met, the ANN has identified the “real” hole, providing the information about its location and size.
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Figure 3. Flowchart for the parameter identification procedure using ANN.
4. Numerical results and discussion

For the potential problem, the results obtained by the damage detection program are analyzed for a
problem of heat flow in a thin plate. Initially, a plate without damage and with the dimensions (0.06x0.06) m

was simulated through the boundary element method (BEM), as illustrated in Figure 4. The boundary of the
plate was discretized into 12 elements and the value of the potential was evaluated at 49 internal points
(Figure 4(b)). The contour conditions for the problem are represented in this figure, where q represents the

heat flow and u represents the temperature at the boundary. Then, a plate with a central hole of radius
0.06 cm, with the same dimensions and boundary conditions, was also simulated, and the obtained results for

the potential were compared with the plate without damage.

(@) (b)

Figure 4. Plate model for the potential problem: (a) dimensions, loading, and boundary conditions. (b) boundary discretization and
sensor locations.



For the elastostatics problem, a BEM model was built for the plate with a hole with the boundary
conditions illustrated in Figure 5(a). Two discretizations were implemented for the external contour, a coarse
mesh with 12 constant elements and a fine mesh with 48 constant elements. Figure 5(b) shows the
discretization for the case of 48 elements in the outer boundary and 12 elements in the hole, as well as the
position of the nine sensors. At the present work, the sensors were uniformly distributed on the plate and no
positioning study of the sensors was performed. The plate was simulated with shear modulus equal to
94,500 MPa and a Poisson’s ratio for plane strain equal to 0.1.
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Figure 5. Plate model for the elastostatics problem: (a) dimensions, loading, and boundary conditions. Insert shows a stress-free
hole; (b) boundary discretization (fine mesh) and sensor locations. Insert shows hole discretization.

The influence of the numerical errors due to the BEM discretization in the optimization results can be
seen in Figure 6. A comparison was made for the optimization results (using 10 runs of a GA approach) and
for two meshes (a coarse mesh and a fine mesh) using the elastostatics formulation for the plate shown in
Figure 5(a). Figure 6 presents illustrative results for the mean values of the error in the location (x and y
coordinates) and size (radius r) of a central hole [20].
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Figure 6. Mean values for the error in location and size of a center hole.

4.1. Assembly of data for the GA and ANN procedures

For the potential formulation, holes with radius equal to 0.15 cm, 0.03 cm and 0.09 cm, respectively,



were considered to assemble the initial population of the GA. For each one of these radius, the coordinate x
of the center of the hole was varied from 0.5 cm to 5.0 cm and the coordinate y of the center of the same hole

was varied from 0.5 cm to 5.5 cm, both coordinates with a step size of 0.5 cm. Then, 110 different positions
for each radius in the plate were simulated and the respective values of the potential difference were stored for
a-posteriori processing.

For the ANN, initially 25 internal points, representing the sensors on the plate, were considered to the
assembly of the input data of this network. After, the number of sensors was subsequently decreased to 15, 9
and 5, respectively. In the present work, the sensors were uniformly distributed on the plate and no
positioning study of the sensors was performed; only a study regarding the reduction on number of the sensors
was done. The distribution of the sensors on the plate, for each case, is shown in Figures 7(a), 7(b), 7(c) and
7(d), respectively.
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Figure 7. Sensor distribution for the ANN: (a) 25, (b) 15, (c) 9 and (d) 5.

In this potential formulation, a single hole with a radius equal to 0.15 cm in nine different hole
positions was considered to assemble the input and output data of ANN. (positions equal to (0.5;0.5) cm,
(0.5;3) cm, (0.5;5.5) cm, (3;0.5) cm, (3;3) cm, (3;5.5) cm, (5.5;0.5) cm, (5.5;3) cm and (5.5;5.5) cm). Then,
another hole of radius equal to 0.05 cm was also analyzed in each mentioned position.

For the elastostatics formulation, holes with radius equal to 0.05 cm, 0.10 cm and 0.15 cm was
considered to assemble the data GA and ANN. For each radius, the x and y-coordinate of the center of the
hole was varied from 0.5 cm to 5.5 cm with a step size of 0.5 cm. Then, 121 different positions for each radius
in the plate were simulated and the respective values of the difference in the mean stress at the 9 internal
points (shown as sensor locations in Figure 5(b)) were found by means of BEM and these values were stored
for a-posteriori processing.

4.2. Analysis of the results obtained from the genetic algorithm

For the potential formulation, in the initial population of the GA, the values of the difference in the



potential were normalized before using the data directly, taking into consideration the maximum value of this
difference. Finally, the initial population with 330 individuals can be formed. As the potential values near the
right border (temperature equal to zero) of the plate are close to zero, the potential difference is used instead
of the direct use of the potential value.

The plots of the location and size of the holes obtained from 5 different runs of the GA are presented
in Figure 8. The program was run only 5 times, because there was no significant difference when this value
was increased. The “real” position of the hole is represented in continuous line and the results found by the
GA in non continuous lines.
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Figure 8. “Real” and simulated hole for potential: (a) for a central hole with elitism equal to 2; (b) for a central hole with elitism
equal to 10; (c) for a hole at (4;5) cm. Inserts shows the region of hole in detail.

As presented previously (in section 3.3), a stopping criterion was assumed for the number of
generations no to exceed 75 in the potential problem, and a stopping criterion for the tolerance (difference
between two fitness functions less than or equal to 1x107°). In the results obtained, the tolerance of the
problem was reached, in other words, there was no improvement in the objective function (fitness function),
and the maximum number of generations was not reached, showing a good convergence of the algorithm. The
crossover fraction was set as 0.8, and the mutation fraction was set as 0.2. Figure 8 (a) and Figure 8 (b) show
a hole in the position (3;3) cm, and Figure 8 (c) shows a hole in the position (4;5) cm, all cases considering a
radius equal to 0.06 cm. For the first simulation (Figure 8 (a)), the elitism was 2, and the second (Figure 8 (b))
and third simulation (Figure 8 (c)), the elitism was changed from 2 to 10, guaranteeing that 10 individuals
survive in the next generation. With the change of elitism (Figure 8 (b)) the holes were concentric, and the
hole position presented a small uncertainty. Moreover, the radius for every simulation was not much sensitive
to the variation of the GA parameters. The crossover function considered was the heuristic function with a
value of ratio equal to 1.3 (this value represents how far the child is from the better parent). Besides, the
mutation function adopted was the Gaussian function. The results are different for each run of GA approach,
because there is a small mutation presence and a crossover function that is different for each run of the
algorithm, in other words, there is an associated occurrence probability.

In a similar manner, for the elastostatics formulation, the values of the difference in the mean stress
were normalized, taking into consideration the maximum value of this difference. The values of x and y-
coordinate of the center of the hole and its radius were also normalized, considering the respective maximum
values. After that, the initial population with 363 individuals can be formed.

The plots of the location and size of the holes obtained from 10 different runs of the GA are presented
in Figure 9. The GA, due to its own randomness, generates a different optimal solution every time it is run;
nevertheless the results of the GA approach present a tendency to be concentrated near the “real” hole. Figure



9 (a) shows the results for a central hole; Figure 9 (b) shows a hole located at (2;2) cm; and Figure 9 (c), a
hole located at (5;3) cm. The radius of each plot was considered equal to 0,12 cm. The “real” position of the
hole is represented in continuous line and the results found by the GA in non continuous lines.
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Figure 9. “Real” and simulated hole for mean stress: (a) for a central hole; (b) for a hole at (2;2) cm; (c) for a hole at (5;3) cm.

Stopping criteria were assumed in the elastostatics problem, both for the number of generations (no to
exceed 100), and also for the tolerance (difference between two fitness functions less than or equal to 1x107°).
The crossover fraction was set as 0.95, and, hence, the mutation fraction is 0.05 for the GA approach
presented in this work. The elitism considered that 10 individuals survive in the next generation. The function
that performs the crossover was heuristic function, considering a value of ratio equal to 0.9. The mutation
function was uniform function where each gene has a probability 0.03 of being mutated. Another GA
parameter configured was the migration. In this work, the migration fraction was set as 0.20, the direction of
migration was set as “both” directions and 20 generations pass between migrations of individuals between
subpopulations. Finally, the selection function was the roulette selection.

The GA technique requires soma extra care for its implementation, due to the required choices for the
configuration of the algorithm parameters, which may be different for each problem. This choice depends on
the realization of a great number of experiments and tests. Moreover, the GA also presents a high
computational cost due to the several evaluations of the fitness function. The damage detection code using GA
can find a region for the probable occurrence of the hole, as this algorithm generates a different optimal
solution every time it is run. Thus, a confidence interval, for the different parameters being identified, can be
obtained.

4.3. Analysis of the results obtained from the artificial neural network

Considering the problem of heat flow, initially the presence of a single hole in the structure was studied.
Then, the influence in the results was verified when the number of sensors at the plate was decreased.
However, as above mentioned, no study regarding the sensor positioning was accomplished in this work. As
well as the input data, the values used to test the network were assembled following the sensor distribution
scheme at the plate. A hole of radius 0.10 cm in different positions was considered to test the network. The
best choice for the parameters of the backpropagation neural network (BPN) was 50 neurons in the input
layer, 4 neurons in the hidden layer, and 4 neurons in the output layer. The other parameters of the ANN were
set as:

e Threshold function in the input and hidden layers: tan-sigmoid transfer function;

e Threshold function in the output layer: linear transfer function;

e Training function: gradient descent with momentum and adaptive learning rate;



e Errorgoal: 1x107°;
e Number of epochs: 5000;
e Learning rate: 0.05.

The influence of the reduction of the sensor number in the results found by the ANN for a hole in the
position (3;3) cm and radius equal to 0.10 cm can be analyzed at Table 1. Table 2 shown the results for a hole
in the position (4;2) cm. The problem domain is reduced when there is a decrease of the sensor number on the
plate. The obtained results depend on the distribution of the sensor on the plate and of the quality of the input
data.

Table 1. Influence of the reduction of the sensor number for a central hole.

“Real” hole Simulated hole
Sensors number | X y r X y r
25 3.00]3.00]0.10 3.0035 | 3.0003 | 0.0992
15 3.00]3.00]0.10]2.9949 | 2.9977 [ 0.1009
9 3.00)3.00]0.10]2.9998 | 2.9973 [ 0.1002
5 3.00]3.00]0.10] 3.0010 | 2.9959 | 0.1000

Table 2. Influence of the reduction of the sensor number for a non-central hole.

“Real” hole Simulated hole
Sensors number | X y r X y r
25 4.00(2.00/0.10] 3,4568 [ 0,5676 | 0,0994
15 4.00(2.00/0.10] 2,1225(0,5135 | 0,0994
9 4.00(2.00/0.10| 2,4224 | 0,4355 | 0,0224
5 4.00(2.00(0.10(1,4138{0,9774]0,1000

The results obtained for a hole of radius 0.10 cm in the positions (3;3) cm (Figure 10(a)), (1;1) cm
(Figure 10 (b)), and (5;5) cm (Figure 10 (c)) for 5 sensors on the plate is shown in Figure 10.
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Figure 10. Potential problem: results from the ANN with 5 sensors for a hole at position: (a) (3;3) cm; (b) (1;1) cm; (c) hole at
position (5;5) cm.

For the elastostatics formulation, the ANN simulates the non-linear behavior between the values of the
local difference in the mean stress (between the undamaged plate and the plate with the damage) and the hole
parameters (location and size). Information regarding the difference in the mean stress is supplied in the input
of the network, besides the parameters of the hole are supplied in the output of the same network. Holes of



different sizes and at different places can be part of the data supplied to the net. Having defined the input and
output data, the next step is to build the network and, then, this network can be trained. Finally, the network
can be tested for other data of difference in the mean stress, obtaining as answer, the location and size of the
hole.

As according to the initial population of GA, the values of the difference in the mean stress and the
hole parameters were also normalized, before using these values directly. After training the network with
these data, this network was tested for a hole of radius 0.12 cm in different positions. Figure 11 shows some
the results obtained, considering 9 sensors on the plate and, whose distribution is presented in Figure 5(b).
The network was configured with 100 neurons in the input layer, 50 neurons in the hidden layer, and 3
neurons in the output layer. Differently from the parameter configuration of ANN for potential formulation,
the error goal was set as 1x107, and the learning rate was set as 0.01.
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Figure 11. Elastostatics problem: results from the ANN for a hole at position: (a) (3;3) cm; (b) (1;1) cm; (c) (5;5) cm; and.

In Figurell, the results present a small area of uncertainty near the “real” hole; moreover, the size of
the hole was obtained with good accuracy. These results were similar to those presented in Figure 10, for the
potential problem, and they were obtained more quickly than in the case of using GA (as a global optimization
technique). For this reason, the solution of a damage detection problem through the ANN (as a parameter
identification technigue) is also known as an online identification. An advantage of the use of ANN in regard
to the GA is that, after training the network, holes with different sizes and in different locations can be tested
without running the damage detection program again.

The damage detection problem using parameter identification technique was solved more quickly than
in the case of using global optimization techniques. In this work, the solution of the problem through ANN
presented good results for the several parameters being identified. In particular, the size of the hole was
obtained with good accuracy, and the location of the hole was given by a fairly small area of uncertainty near
the “real” hole, for the several cases tested. In part, difficulties in finding the exact area of the occurrence of
the damage are due to training problems of the network, or choice of the configuration parameters of the
network or the choice of the input and output data. Taking into account the advantages of each technique, a
hybrid approach could be considered for future work. In this approach, the GA could be used to find the
occurrence area of the damage, and then the ANN could find the exact size of this damage, reducing the
search time for the optimum result.

4.4. Example of analysis of noise or measurement error in the data

To examine how the inverse method using GA herein responds to measurement error, random noises
were introduced into measured data. The flowchart presented in Figure 12 shows this approach.
The random noise is a signal formed by a set of random numbers drawn from a normal distribution



with zero mean (white noise) and with COV (coefficient of variation) given as a percentage (5% or 10%) of
the measurement value at the sensor location. This noise is added to the measured data, to create a set called
“Measured data 2”. This new measured data was normalized (as discussed in section 4.2) and then used in the
GA approach for the elastostatics problem. The GA approach was run 10 times, for each case (5% and 10%
noise), always considering the same configuration of parameters as in the case without noise. In each run of
the GA, a different noise signal was generated, with the proper COV.

Initial
opulation
noise Pop

+ Y

Measured + Measured > GA

data data 2

v
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Figure 12. Flowchart for the analysis of the measurement error.

A hole in (3,3) cm position with a radius size equal to 0.12 cm was simulated for the elastostatics
problem, considering a random noise with 5% and 10% introduced into measured data. The results are
summarized in Table 3 and Table 4. Table 3 shows the mean results obtained through 10 runs of GA with 5%
random noise in measured data, where errors around 2.10%, 3.30% and 4.17% were obtained in x-location, y-
location and radius size, respectively, which are comparable with the errors for the noise-free results. These
errors were small and no regularization is needed in this case. Besides, as mentioned previously, GA generates
a different optimal solution every time it is run. When the GA was analyzed with 10% random noise (Table
4), the error in radius size was about 7.50%, and the errors in x-location and y-location were similar to the
errors for the 5% random noise case. These results show that the GA optimization procedure, for
identification and localization of the hole in the structure, presents very small sensitivities to changes in the
measured values at the sensors, proving the robustness of the algorithm. A similar analysis of the
measurement noise, or errors in the measured data, can be performed, to investigate the case of the inverse
method using ANN, and is the object of the current research.

Table 3. Results obtained with GA for 5% random noises into measured data.

Result | noise-free | Error (noise-free) [%] | With noise of 5% | Error (with noise) [%]
X 3.069 2.30 3.063 2.10
y 2.731 8.97 2.901 3.30
r 0.127 5.83 0.125 4.17

Table 4. Results obtained with GA for 10% random noises into measured data.

Result | noise-free | Error (noise-free) [%] | With noise of 10% | Error (with noise) [%0]
X 3.069 2.30 3.006 0.20
y 2.731 8.97 2.933 2.23
r 0.127 5.83 0.129 7.50




If a logarithmic transformation J; = Iog(Jj +g) (with £=0.1x10" to prevent the appearance of a —wo

value in the function [1]) is done in the functional formulation (Equation (4)), the result for a central hole is
slightly improved. Table 5 shows the comparison between the results without logarithmic transformation
(case A) and with this transformation (case B) for a hole in (3,3) cm position and a radius size equal to 0.12
cm, and errors of simulation with regard to a “real” hole. Table 6 shows the mean results obtained through 10
runs of GA with 10% random noise in measured data, where an error about 0.57%, 2.23% and 7.50% were
obtained in x-location, y-location and radius size, respectively, which are comparable with the errors for the
noise-free results, considering a logarithmic transformation.

Table 5. Comparison of GA identification results using the mean stress, with and without a logarithmic transformation (cases B and
A, respectively).

Result | Case A | Error case A [%] | Case B | Error case B [%0]
X 3.069 2.30 2.918 2.73
Y 2.731 8.97 2.909 3.03
R 0.127 5.83 0.122 1.67

Table 6. Comparison of GA results for the mean stress with logarithmic transformation (case B), with and without 10% random
noise in the measured data.

Result | Case B | Error case B [%] | With noise of 10% | Error (with noise) [%0]
X 2.918 2.73 3.017 0.57
y 2.909 3.03 2.933 2.23
r 0.122 1.67 0.129 7.50

The results from Table 5 illustrate the fact that, in most cases, the use of the logarithmic
transformation tends to reduce the percent error in the identification of the parameters of the damage.
According to Table 5, the error in y-location for both cases, A and B, was larger than the error in x-location. A
possible reason for the difference in these results is that only a central hole was simulated for the plate model
presented in Figure 5. From Table 6, one can see that no significant change occurred in the results when a
noise of 10% was added in the measured data. The GA approach presented in this work is robust in regard to
measurement error, as only small errors were obtained at the results (radius, x- and y-location) when an error
of 10% was added in the measured data. The plate is square and symmetric, as can be seen in Figure 5;
however, the boundary conditions induce an asymmetry in the model. The influence of the plate's aspect ratio
and boundary conditions, as well as the proximity between the hole and different sections of the boundary (for
example, smooth parts of the boundary versus corners, or sections with different boundary conditions) is an
object of current investigation.

The present work is limited to a simple thin plate with a circular hole. For more general problem,
multiple damages can be addressed, requiring a new assembly of chromosomes (Equation (10)) of GA and
also changes in the input data of ANN, to account for the presence of these multiple damages. Cracks can also
be modeled, on a first approximation, as elliptical holes, so that the BEM formulation presented in this work
could also be used. By doing so, a new assembly of chromosomes of the GA has to be performed, including
individuals that represent elliptical hole, and new inputs have to given to ANN accordingly, allowing the
identifications of circular and elliptical holes in the plate. After this first approximation for the crack is
implemented, a more accurate formulation for the BEM direct model should be considered, to properly model
the presence of the crack (for example, by using a BEM formulation specific for fracture mechanics, such as
the dual boundary element method [21]). As part of the ongoing research, the extension of this approach to
multiple damages and multiple types of damages is being undertaken, together with a proper treatment of



uncertainties, which are present not only in the measurements, but also in the numerical simulations (due to
discretization errors), and in the problem parameters, such as the domain geometry variables and material
properties.

4.5. GA approach for damage identification: a comparison with literature results

The method herein (that uses measurements of differences in mean stress) was compared with a result
presented in [1] (that uses measurements of the boundary displacements and tractions). For both examples that
were compared, a plate with external dimensions (0.10x0.10) m was simulated, and the loading was applied

on the left-hand side external boundary. The material constants were considered equal to 100 GPa for shear

modulus and 0.3 for Poisson’s ratio. In our work, the results of comparison were reached for a static loading
of 1000 MPa in both the horizontal and in the vertical coordinate direction, on the left-hand side external

boundary, and the right-hand side was fixed. In [1], the plate was subjected to a harmonic dynamic loading in
both directions at the left-hand side, and the right-hand side was also fixed.

Table 7 shows the results for GA found by [1] and the results presents in our work. In [1], the results
were obtained after running GA with 200 generations, a population equal to 5 (no information is given in that
text on how the individuals of the population are placed in the plate), and the plate under dynamic loading (for
more details, see the reference [1]). In our work, the parameters of the GA were configured according to those
parameters presented in section 4.2 for the elastostatics problem, regarding 200 generations and a population
of 49 individuals. As a test, only a hole with diameter equal to 0.5 was considered in some positions where the
test case (“real” hole) was not included in the initial population (the x and y-coordinate of the center of the
hole was varied from 0.5 cm to 9.5 cm with a step size of 1.5 cm), hence, validating the results obtained. For a
general problem, more individuals have to consider in the initial population of GA.

Table 7. GA approach: comparison with literature results.

“Real” Results presented by [1] Results in this work
Test hole Calculated best Average for 1000 Error Calculated best Average for 20 Error
element solutions [%] element solutions [%]
X 4.0 3.9606 5.59 38.75 3.7336 3.52 12.00
y 4.0 4.0236 4.74 18.50 3.9578 3.95 1.25
diameter 0.5 0.4968 0.52 4.00 0.5000 0.53 6.00

As shown in Table 7, the GA approach used in this work has presented, for most cases, more accurate
results in the identification of the “real” hole dimensions, with respect to the GA approach used in [1]. In the
literature example, an average of 1000 solutions was computed, while, in this work, only an average for 20
solutions was performed. Also, for each solution, only a few seconds were needed to run the inverse program
using GA on a PC. These features illustrate the accuracy and the low computational cost of the current
approach.

5. Conclusions

In this work, an inverse problem of identifying damage in a plate structure was solved using both
optimization and parameter identification techniques. A genetic algorithm (GA) was used as the optimization
technique, and an artificial neural network (ANN) code was used as the parameter identification procedure.
Two models for the direct problem were investigated, one considering a heat flow problem and another
considering an elastostatics problem. In the heat flow problem, the boundary element method (BEM) for the



potential was considered for the direct problem. The BEM for the potential supplies the necessary information
(potential values at internal points of the plate) to the damage detection program. In the elastostatics problem,
a boundary element method (BEM) formulation was used as the direct model in this inverse problem. The
refinement of the mesh for the direct BEM model was shown to play an important role, improving accuracy in
the damage identification results, when a fine mesh was used. The analyses of the results indicates that the
damage detection code using GA can only find a region for the probable occurrence of the hole, as this
algorithm generates a different optimal solution every time it is run. The fitness function of the GA approach
presented in this work has converged for the specified tolerance, before the algorithm has reached the
maximum number of generations. Moreover, this GA approach was robust in regard to the measurement error,
as only a small error was obtained in the results when a noise of 10% was added to the measured data. Also,
this GA approach compares well, both in accuracy and in computational cost, with respect to a similar GA
approach used in the literature for damage identification. The solution of the problem through ANN has also
presented good results for the several parameters being identified.

An important observation is that very small holes are difficult to observe by the damage detection
program, mainly when these holes are close to the borders of the plate. The optimization and the identification
techniques adopted in this inverse problem can be used concomitantly, as independent procedures to identify
the presence of a hole on the plate, thus providing a means to verify the numerical results obtained for the
location and size of the damage in the structure, increasing the confidence in the damage identification results.
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Abstract

This paperpresents a boundary integral formulation for the computation of moments and stresses at internal and
boundary points of laminated composite plates. An integral equation for the second displacement derivative is develo-
ped and all derivatives of the fundamental solution are computed analytically. Stresses on the boundary are computed
by a procedure that uses integral equations, derivatives of shape functions, and constitutive relations. The obtained
results are in good agreement with finite element results available in literature.

Key words: laminated composite, boundary element method, stress analysis.

1. Intr oduction displacement field due to a point moment. Fundamental
solutions for anisotropic plates utilize complex variable
The attempt of developing analytical models for the rep- theory following Lekhnitskii [5]. Shi and Bezine [6],
resentation of the behavior of plates comes since middle presented a boundary element analysis of plate bending
of 1800 with works developed by Sophie Germain, La- problems using fundamental solutions proposed by [7]
grange, and Poisson [1]. Since 1978, when the first gen-based on Kirchhofflate bending assumptions. Rajamo-
eral direct formulation based on the Kirchhsfhiypo- han and Raamachandran [8], proposed a formulation
thesis appeared, the boundary element method (BEM)where the singularities were avoided by placing source
has had large growth, being nowadays applied to se- points outside the domain. Paiva et al [9], presented an
veral practical engineering problems. The first works analytical treatment for singular and hypersingular inte-
discussing the use of boundary element direct formula- grals of the formulation presented in [6]. Albuguerque
tion, in conjunction with the Kirchhié's theory, were et al [10] presented a method to transform domain in-
by Bezine [2], Stern [3], and Tottenhan [4]. Nowa- tegrals into boundary integrals in the formulation pre-
days, BEM is a well-established numerical technique to sented in [6]. In [11], this formulation was extended
deal with an enormous number of engineering complex for dynamic problems. Shear deformable shells have
problems. Analysis of plate bending problems using been analyzed using the boundary element method by
the BEM has attracted the attention of many researchers[13] with the analytical fundamental solution proposed
during the past years, proving to be a particularly ade- by [14]. Wang and Huang [15], presented a boundary
guate field of applications for that technique. The fun- element formulation for orthotropic shear deformable
damental solution is an essencial part of the boundary plates. Later, in [16], the previous formulation was
element method. Bending analysis of thin plates by the extended to laminate composite plates. Recently, [17]
BEM requires the use of two fundamental solutions: the presented a displacement discontinuity formulation for
displacement field due to a transverse point load, and themodeling cracks in orthotropic Reissner plates.

This paper proposes numerical procedures to com-
o i pute moments and stresses in internal points and at the
Er?]aﬁi%?ﬂr:e?s%gadzrisana@fem.unica.mp.br (Adriana dos boundary of cor_nposﬁe Iammate.d plates using a boun-
Reis Gouvea)ederlima@fem. unicamp. br (Eder Lima de dary element thin plate formulation. To the best of au-
Albuguergue) thor's knowledge, there is no paper in literature that
Preprint submitted to Engineering Analysis with Boundary Elements April 17, 2009




presentsa boundary element formulation to compute the cornersP is the field point;Q is the source point;
moments and stresses in anisotropic plates or shells.  and an asterisk denotes a fundamental solution.
The transverse displacement fundamental solution is
2. Boundary integral equation given by:
As shown by [10], boundary integral equations for 1
transverse displacements of anisotropic thin plates and W' (0,6) = ClRl(p 6) + CaRx(p, 6)
its derivative can be written, respectively, as:
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X=X

- [ ey @5 @ P aree
(-0 - (-

. Cl = GHe]_ s (6)
+ Z R, (P)W; (Q. P) + f gPW(Q,P)d, (1) (01— db)? + (€ - €))
i1 Q C GHe, , (7)
and
c, - M%) ®)
kI Q)
G = (dh—-h)?+(er+&) 9)
ov;,
o ( (P)) ar(P) H o= (G- (e &), (10)
OR;
+Z m R = p?[(cosd+dsing)® - & sir ]
Vy(P P » Y Q. p)drep
f( nl ) (Q ) = Mn( ) aml @ )) r(P) {Iog[ ((cosd + d; sin6)® + & sir? 9)} }
N Z Ry (P) Wi (Q P)+ f g(P)—(Q P, (2) —40%6 sind (cosh + d; siné)
where 2 is thederivative in the direction of the outward X arctar(%i;gsmg) , (11

vectorn that is normal to the boundaity, %] is the di-
rectional derivative at the source point on the boundary . _
normal directionm; M, andV, are, respectively, the Si = p°esind(cosh + d; sine)
normal bending moment and the Kirchhegjuivalent
shear force on the boundaly R; is the thin-plate reac- 2
tion of the cornersyy is the transverse displacement of xqlog|— ((cos@ +d; sing)? + e sirf 9)
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Figurel: Staking sequence in a laminate composite plate Wigies.

+p? [(cose + dj sing)? — & sir? 9]

X arctar( ) ,

di and e arethereal and the imaginary part, respec-
tively, of the roots of the characteristic polynomial:

€ sing

_ 12
cost + d; sin@ (12)

Doou* + 4D + 2(D1p + 2Dgg)t?

+4D1gu + D11 = 0, (13)

D11, D16, D12, D22, Dog, andDgg are the bending stiff-
ness constants of an anisotropic thin plate.

The repeated indexin R andS; does not imply sum-
mation. The cofficienta is an arbitrary constant taken
asa=1.

Other fundamental solutions are shown in works of [6]
and [10].

3. Computation of stresses and moments on internal
points

Laminates are fabricated such that they act as an integral
structural element. To assure this condition, the bond
between two plies in a laminate should be infinitesi-
mally thin and not shear deformable to avoid the ply slip
over each other, and to allow displacement continuity
along the bond (see [21]). Thus, we could consider that
strains are continuous along the thickness. However, as
each ply is of a dferent material, stresses present dis-
continuities along laminate interfaces.

As presented by [21], stresses at each ply can be evalu-

ated from strain by:

Bledi)
Txy Yxys

wherematrix Q is given by:

Q=T7Q(T ™" (15)
Thetransformatiormatrix T is given by:
cof a sirf 2 sina cosa
T= sirf a cofa  -2sinacosa |,(16)

—sinecose sinacosa cofa - Sinfa

whereq is the angle between the fiber direction of given
ply and the global referencey, and stithess matrixQ
is given in terms of engineering constants by:

EL nwrEr

Ivirvre wipvr 0
— viTEr Er 17
Q vy Iowovm 0 ’ 17
0 0 Gt

whereE, andEy are elasticity moduli in the longitudi-
nal and transversal directions, respectiv€y; is the
shear modulus in the plane of the ply, and is the
Poisson cofiicient (see, for example [21]).

Moments are given by:

02 *w *w
My = =|D11— + Di2—5 +2D1g——— 1
x ( ny2 + D12 oy? + 166x6y)’ (18)
*w *w *w
My = —[D12—= + Doo— + 2D2s——— 19
y ( 1255 + D22 oy? + 266X(9y)’ (19)
and
w *w O
My = —|Dis—= + D26—=—= + 2Dgs——|. (20
xy ( 16,2 * D26 Y + 66(9X3y) (20)
In Kirchhoff plates, strains are given by:
*w
= -z— 21
Ex Zaxzs ( )
*w
& = _Zé_yz’ (22)
9w
= —2z——. 23
Vxy Z5%3y (23)

wherez is the distance from the point where displace-
ments are been computed and the midplane (see Figure
1).

So, in order to obtain strains, moments, and stresses, the
second order derivatives of integral equation (1) need to
be computed. These derivatives are given by:
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Second order derivatives in relation toy and xy

are computed by similar procedures and will not be
shown herein. Derivatives of fundamental solutions of
transversal displacement can be expressed by linear
combination ofR andS; derivatives. All derivatives of
R andS; up to the 4th order are presented by [6]. The
5th order derivatives are given by:

(QP
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wherethe second derivative of the transversal displace-
ment fundamental solutions in relationxas given by:

2 2 2
Purp,6) _ 1 [ PRup.6) | PRp.6)
ox2 8n

ox2 270

(27)

+Cg

y&mm_%&m@”

ox? Ox?

Secondrderderivatives of other fundamental solutions
in relation tox are given by:
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R 29
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Figure2: Variables of the transformation of the domain integral into

a boundary integral.

and

P p?

&S 4q {(Sd“ —10q%d2 + ei4) cos 6
Ap

12d (d* - g*)sing cos 0
Ao

+

3(e.2 - 3d2) (di2 + e.2)2 sir? § cosd
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where A, = p? [cos’- 6 + (di2 + az) Sint g + d sin2¢9]3

andA, = [cos?e + (d? + &2)sir? 0 + d sin 29]3.

The last term of equation (24) can be transformed from
a domain integral to a boundary integral following the
procedure proposed by [10]. Thus, considering a linear

distributed loady = Ax+ By + C, we have:

o2w* H* or
gévxzdQ frr on and

where

f (Ax+ By + C) pdp,

r is thevalue ofp at the boundary (Figure 2).

(43)

(44)

=

N @E//7
I dt

Figure3: Normalmand tangential directions at the source point.

4. Computation of stresses on the boundary

Equations (24), (25), and (26) present integrals whose
kernels have singularities of orde% To compute
stresses on the boundary, those equat|0ns will provide
integrals that are more than hypersingular. Conse-
quently, the computation of stresses on the boundary
demands an alternative approach.

The directional derivative of equation (1) at the source
point in the boundary tangential direction (Figure 3) is

given by:

ow .
ot
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ot

oV
at

ow*
—dQ.
+Lgm

Insidea quadratic discontinuous boundary element, the
directional derivative of the transversal displacement in
the tangential direction is given by:

dw

ri

oW,

1

ot

whereZst, % and 2%
element nodes in the tangent to the boundary direction
at the source pointNg, No, and N3 are quadratic dis-

continuous shape functions written as:

N1=-’f(—

9
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f_

3

4

OM ow IR,
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at an )+Z at e

anat) Z RC'

(45)

oW, OW3

+Np =2 + Ng—2. (46)

)

ot ot

¢ aredervatives ofw at boundary

(47)
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N2 = (1 - éf) (1 + Ef) , (48)

and
9. 3

Thesecondlerivative of the transversal displacement is
given by:

d®w d (ow) d¢

& (7)o (%)

Writing ‘é‘;” in terms of nodal values interpolated by
shape functions as given by equation (46), we have:

dw d

ow OW: oWs
dz dg(Nl s a N ) (1)
or
ﬂv dN1 8W1 dN2 6W2 dN3 6W3
dt2 d§ at df 5t d§ (9t
<(vg) (52)

Following a similar procedure tg‘;—w, it is possible to
obtain:

d?w _ dN]_ 8W1 L A sz (9W2 LI dN3 0W3
dmat d.f om d¢ om dé om
dt
1/—].
(v 9
where2% , &2 and %% arederivatives ofw at boundary

element nodes in the normal to the boundary direction

at the source point.
It was not possible to calcula%zn—2 in the same way of

d 2 and [j’m"; because we do not had®. An alternative

IS tO write equatlons of moments in reference systeim

(o 2, 22,
M, = (D1zg::2v + Dzztj;t\;v ZDQG%)’ (55)
and
Mmt = - (D/le%v + D/266;T\;v + ZDEG%)' (56)

where Di'j (i,j = 1,2,6) are the flexural rigidities in
reference systemt, that is:

’

. [ Pu D Dl
D'=| D, D,, D, |=T'DT, (57)
D16 D26 D66
where
D11 D12 Dge
D=| D12 D2 Do (58)
Die D2s Des
In this system, the known variables arsty,, ‘9%‘2’ and

2
amm, andthe unknown variables aréd;, M, and" v,

Writing thoseequations in a matrix form, we have:

’ ’ ’ 02
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M p=| D, Dy Dy |[{ Z¥ +. (59)
M D/16 D,26 Dlse g;:;’t.
Thus,from equation (59), we have:
ow
P = S} Mm + S1,M; + S;Mms, (60)
ow , ,
W = Slem + SZZMt + Sgstta (61)
and
0w
It = S1Mm + SpgM; + SggMmt, (62)
where
. Sill 8112 S:1 -1
S = S/12 522 S;e =D . (63)
S16 S26 S66
Isolatingtheunknown variables, we have:
o*w ,
6m2 + S]_ZMI + SlGMmt Slle’ (64)
o*w
S,oM; + SZGMmt el - S,Mm, (65)
and
, , ow
SzeMr + SgeMmt = =—- = S16Mnm, (66)

thatcanbe written in the matrix form as:
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0 S, Sy |l M ; {

0 Sy Ses I\ Mm ! "A 5
_S’ll|\/|t + s

= (?:-;ZTZV_S’lem . (67) M
%_S;GM”‘

5 Figure4: Discretization square plate using 3 elements per side.
The unknowvns g—n‘g M; and M; can be computed by
solving the linear system (67).

Finally, the transformation Table 1: Displacements and moments in a square plate with clamped

edges.
Pw Pw Node This Reference,
o o work [23]
Pwo | _ Pw A WETh3/
=Tq 20 3 (68) T

» i Q) x 10 | 09511 | 0.9341
5 o B Mo/

(@) x 107 | —7.0704| -6.6551

canbeused to compute second derivatives necessary to
calculate moments and stresses.

5.2. Laminatedplate with simply-supported edges

5. Numerical Results Now, consider the same laminate with stacking se-
quencefa/—a/+a/—a/+a/—a/+a/ —a/ +a] with

0 < @ < 45°. All edges are simply-supported. Material
properties, dimensions, load, and the mesh used are the
same of previous example. Figures 6 and 7 show the
effect of the variation of on the displacement and re-
sultant moments, respectively, at the centre of the plate
(point A). They are compared with finite element results
obtained by [23]. As it can be seen, in both cases the
agreement between the boundary element thin plate and
the finite element shear deformable plate is very good.
Figure 8 shows the stress distributispalong the thick-
ness of the plate at point A, considerimg= 45°. In this
case, as all layers present fibers inclined with respect
to x direction, variations of stress between layers are
dsmaller than in previous case.

5.1. Laminate plate with clamped edges

Consider a cross-ply laminated graphite/epoxy com-
posite square plate with clamped edges under uniformly
distributed load of intensityg and with edge length
a =1 m. The laminate is a nine ply symmetrical cross-
ply laminate with the lay-up [0/90/®0/0/90/0/90/0].
All plies have the same thickness. The total thickness is
equal toh = 0.001 m and material properties arg;
= 207 GPaEr = 5.2 GPaG_ 1t = 3.1 GPa, and/LT:
0.25. The plate was discretized using 12 quadratic dis-
continuous boundary elements, as shown in Figure 4.
The displacement at poidtand the moment at poil,
shown in Figure 4, are compared with finite element re-
sults obtained by [23]. As it can be seen in Table 1, the
agreement between the boundary element thin plate an
the finite element shear deformable plate is very good if
we considered that the finite element formulation takes
into account the effects of shear deformation. The third example is a clamped square plate with edge

Figure 5 shows the distribution of the strasg at lengtha = 0.254 m and the ratio between thicknesses
point B along the thickness of the plate, from the mid- and edge lengtih/a = 0.05. The plate is subjected
surface to the top surface. It can be seen that, as theto a uniformly distributed static loag. The following
stiffness of the material is higher in the direction of the material parameters are used in the numerical analy-
fibers, the stress is higher in the lamina with fibers ori- sis: Er = 6.895 GPa,E, = 2Er, v,7 = 0.3, and
ented parallel to the axis(a = 0°). Gt = Er/2(1 + vi1). The mesh used is the same

8

5.3. Orthotropic plate with clamped edges
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of the first example (Figure 4). Figure 9 presents mo- puted using constitutive equations and shape function
ments My computed by the present work and results derivatives. The obtained results are in good agreement
obtained by [24], using the meshless Petrov-Galerkin when compared with results available in literature.
method (MLPG). Results are shown along the central

line of the plate, ayy = a/2. As it can be seen, there

is a perfect agreement between both results. As in [24], References
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